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Problem 1

a) i) Here, alternative 1) is correct. If the mass density is F , a line segment dl will have

a mass of Fdl. The total mass is then the sum of these segments, thus equal to∫
C Fdl.

ii) Here, alternative 4) is correct. Alternative 1) can also be considered correct, if F is

assumed to be parallel with the curve C.

b) If F and F are constants, they may be put outside the integral sign. The integral of a
vectorial line segment around a closed loop is always zero. To understand this you can
imagine the integral to be a sum of small movements dl. The sum of all these
movements is the total movement from the start position to the end position. And since
the curve ends in the same point where it started the integral is equal to zero.
Hence, alternative 2) and 4) will be zero for the closed loop C1.

For the open loop, curve C2, all integrals 1)-4) will be different from zero (except the
very special case if F is normal to the vector from the starting to ending point of C2).

C1

dl dl

C2

dl dl

c) Here, the alternatives 2) and 4) will be correct for the closed surface, and both can be

proved by the divergence theorem:
∮
sF · dS =

∫
v(∇ ·F)dv. Proving that alternative 4) is
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equal to zero is easy. For this case F is constant, so the integrand ∇ ·F, and by that the
integral, is equal to zero.

In order to prove 2) we assume that F is a constant vector F = F â. F is the absolute
value of F while â is the direction (both are constants). By using the divergence
theorem we can write â ·

∮
S FdS =

∫
v(∇ · F)dv = 0 since the integrand ∇ · F = 0 (F is

constant). By that, integral 2)
∮
S FdS = 0 when F is a constant.

The integrals 1) and 3) is FS and FS respectively.

d) For a closed surface, there are always two normal vector for a given point on the surface,
one pointing inwards and one pointing outwards.
Unless specified otherwise, we use the normal vectors pointing outwards.

e) The surface normal for an encircled surface is defined by the positive rotational
direction. We use the standard right-hand rule: Let your fingers follow the rotational
direction, and the normal vector for the surface is in the direction of your thumb. For
the curve C1 the surface normal vector is out-of-plane.

Problem 2

a) i) The flux of a vector field through a surface S is defined as

Flux =

∫
S
F · dS, (1)

and describes how much F ”flows through” S. For instance, if F describes the flow
of water, the flux describes the total amount of water that is running through S per
unit time.

ii) Divergence is defined as

div F = lim
∆V→0

∫
S F · dS

∆V
(2)

where the volume ∆V is an infinitely small volume, and S is the surface of ∆V .
From the definition we see that the divergence is the flux inn/out of the volume
divided by the volume. In Cartesian coordinates the expression for divergence is:

div F = ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

, (3)
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where ∇ is defined as ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

The divergence states the source properties of F, or in other words, to what extent
F is spreading away from or towards a point. A source has a positive divergence
while a drain has a negative divergence.

NOTE : It is only in Cartesian coordinates that the gradient and the divergence can
be expressed as ∇F and ∇ · F respectively, with ∇ defined as above. This is due to
that the Cartesian coordinate system is globally orthogonal. For instance, in
spherical coordinates, which is locally orthogonal1 the gradient F is given by

∇F =
∂F

∂r
r̂ +

1

r sin θ

∂F

∂ϕ
ϕ̂+

1

r

∂F

∂θ
θ̂, (4)

and thus it is easy to think that the definition ∇ =
∂

∂r
r̂+

1

r sin θ

∂

∂ϕ
ϕ̂+

1

r

∂

∂θ
θ̂ leads

to the following divergence ∇ · F:

∂Fr
∂r

+
1

r sin θ

∂Fϕ
∂ϕ

+
1

r

∂Fθ
∂θ

. (5)

This is not the correct result. The actual divergence can be derived by using a
general coordinate transformation between Cartesian and spherical coordinates (we
will not do this), and then we find

div F =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂Fϕ
∂ϕ

+
1

r sin θ

∂(sin θFθ)

∂θ
, (6)

which is not the same as the initial expression. This is important to be aware of. So
when dealing with cylindric and spherical coordinates in exercises or exams we
recommend you to find the expressions for gradient, divergence and curl from a list
of formulas.

iii) The x-component of the curl of F is defined as

(curl F)x = lim
∆S→0

∮
C F · dl

∆S
, (7)

where ∆S is a surface element which is normal to the x-axis and C is the closed
loop that encircles this surface element. Equivalent definitions is also valid for the
y- and z-components, where ∆S is defined as surface elements orthogonal to the y-
and z-axis respectively.

The curl of a vector field describes to what extent the field is circulating around a
point. This stands in contrast to the divergence which describes to what extent a
field is flowing out from a point.

In Cartesian coordinates the curl has a simple expression:

curl F = ∇× F (8)

Curls in cylindric and spherical coordinates have a more complex form and can be
found in lists of formulas.

1It is easy to picture this: Two people on earth, one on the north pole and the other on the south pole, are
pointing to the sky. In this case they are in fact pointing in the opposite direction from each other!
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iv) For conservative fields the line integral
∮
C F · dl is equal to zero for any curve C.

By using Stoke’s theorem one can prove that ∇× F = 0. From the fundamental
theorem (or Helmholtz’ theorem) of calculus you can also write F as a simple scalar
f so that F = ∇f .

b) i) The divergence theorem states∫
V

(∇ · F)dV =

∮
S
F · dS, (9)

where S is the closed surface that surrounds the volume V . Thus, the divergence
theorem says that the total flux out of the volume is equal to the sum of all sources
and drains inside the volume.

ii) Stoke’s theorem states ∫
S

(∇× F) · dS =

∮
C
F · dl, (10)

where S is the surface encircled by the curve C. Stoke’s theorem says that the
circulation around the curve,

∮
C F · dl, is equal to the sum of all the circulations

across the surface S. A mental picture of Stoke’s theorem can be imagined if you
picture many whirlpools (circulations) in a lake (defined by the surface S). The
total circulation along the shore is then the sum of all the circulation from the all
the whirlpools!

Problem 3

a) By using the definition of divergence i Cartesian or spherical coordinates, we find that
∇ · F = 3. An infinitesimal volume in spherical coordinates is dV = r2 sin θdrdθdϕ so
that ∫

v
(∇ · F)dV =

∫ R

0

∫ 2π

0

∫ π

0
3r2 sin θdϕdθdr

= 3

∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dϕ

= 4πR3.

(11)

Here, you can picture what the answer will be without solving the integral. Since the
divergence is constantly equal to 3 across the entire volume, the answer must be 3 times
the volume of the sphere, which gives 4πR3:∫

V
(∇ · F)dV = 3

∫
V

dV = 4πR3. (12)

b) The surface-element of a sphere with radius R is dS = R2 sin θdθdϕr̂. Note that since we
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integrate over the surface of the sphere, r = R throughout the integral. By that we find∫
v
(∇ · F)dv =

∮
S
F · dS

=

∫ 2π

0

∫ π

0
(Rr̂) · (R2 sin θdθdϕr̂)

= R3

∫ 2π

0
dϕ

∫ π

0
sin θdθ

= 4πR3.

(13)

The answer is also obvious here, since F is constant across the surface S equal to
F = Rr̂. Since F and dS points in the same direction the answer must be R times the
surface of the sphere, and again we find the answer 4πR3:∮

S
F · dS = R

∮
S

dS = 4πR3. (14)

Problem 4

a) i) The line integral along the first segment (0, 0)→ (a, 0) be equal to zero because the
integrand is zero (y = 0, and ŷ-component of F is orthogonal to the line segment).
Thus, it is sufficient to integrate from (a, 0) to (a, b) so that

I =

∫
C
F · dl

=

∫ b

0
(a2y + 2a)dy

=
1

2
a2b2 + 2ab.

(15)

ii) The straight line segment from (x, y) to (x+ dx, y + dy) is given by the vector
dl = dxx̂ + dyŷ. From that we find

F · dl = Fxdx+ Fydy

= (xy2 + 2y)dx+ (x2y + 2x)dy.
(16)

In order to integrate this we need to find the correlation between x and y, which is
y = bx

a , so that

I =

∫
C
F · dl

=

∫ a

0

[
x

(
bx

a

)2

+ 2

(
bx

a

)]
dx+

∫ b

0

[(ay
b

)2
y + 2

(ay
b

)]
dy

=
1

2
a2b2 + 2ab.

(17)
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x

y

(0, 0) (a, 0)

(a, b)

iii) These integrals have equal values since F is a conservative field:

∇× F =

(
∂Fy
∂x
− ∂Fx

∂y

)
ẑ

= (2xy − 2xy) ẑ

= 0.

(18)

For a conservative field, you only need to consider the start- and end points to solve
the line integral. This is a general answer: We can imagine a closed loop C which
consists of two curves C1 and C2. When we reverse the direction of one of the
curves we find

∮
C F · dl =

∫
C1

F · dl−
∫
C2

F · dl = 0 so that∫
C1

F · dl =

∫
C2

F · dl. (19)

b) The curves i)-iii) are shown in the figure below
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i) The length of the parametrized line segment dl is

dl =
√

dx2 + dy2

=

√(
dx

dt

)2

+

(
dy

dt

)2

dt

= 2
√

2 e2tdt.

(20)

If we put this together with the function f [x(t), y(t)] = x(t) + y(t) = 1 + 2e2t we find∫
C
fdl =

∫ ln 2

0
(1 + 2e2t)2

√
2 e2tdt

=
√

2
(
e4t + e2t

)∣∣∣ln 2

0

= 18
√

2 .

(21)

ii) The length of the line segment is dl =
√

dx2 + dy2 =
√

1 + (dy/dx)2 dx. With
y = 1

2x
2 we get dl =

√
1 + x2 dx. If we evaluate f = 2y

x

√
1 + x2 along the line

y = 1
2x

2 we get f = x
√

1 + x2 so that fdl = x(1 + x2). Integration yields∫
C
f(x, y)dl =

∫ 2

0
x(1 + x2)dx

=

(
x2

2
+
x4

4

)∣∣∣∣2
0

= 6.

(22)

iii) In this case the line segment is given by

dl =
dl

dt
dt

= (x̂ cos−2 t+ ŷ sin t)dt
(23)

Thus, we find that F · dl = (1 + 2 sin2 t)dt and

I =

∫
C
F(t) · dl(t)

=

∫ π/3

−π/3
(1 + 2 sin2 t)dt

= (2t− sin t cos t)
∣∣π/3
−π/3

=
4π

3
−
√

3

2
.

(24)
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