FORMATION OF COSMIC RAY ANTINUCLEI

Based on M. Kachelrieß, S. Ostapchenko and J. Tjemsland arXiv:[1905.01192, 2002.10481]

Jonas Tjemsland

PhD candidate Department of Physics Norwegian University of Science and Technology

Monash webinar, September 1st, 2020

Content

Motivation

The microphysics of coalescence

Antinuclei detection prospects

Conclusion

Note: The discussions on coalescence apply equally well to particles and antiparticles. Moreover, only the deuteron production will be discussed, but the same description has been applied to antihelium and antitritium as well.

Antinuclei as a signature

Image credit: NASA JPL; NASA AMS

J Norwegian University of Science and Technology

Timescales

- ▶ Hard process: $t_{\rm ann} \sim 1/\sqrt{s}$
- Perturbative cascade: $\Lambda^2_{\rm QCD} \ll |q^2| \ll s$
- Hadronisation: $L_{\rm had} \sim \gamma L_0, \ L_0 \sim R_p \sim 1 \ {\rm fm}$
- Coalescence: merging of nucleons that have nearly completed their formation

The coalescence model in momentum space

The new coalescence model

M. Kachelrieß, S. Ostapchenko and JT [1905.01192]

Goals

- Include constraints on both momentum and space variables
- Include a quantum mechanical treatment
- Have microphysical picture
- Include momentum correlations

Starting points

- ▶ Nucleon capture process: $p + n \rightarrow d^*$
- Wigner functions

The quantum mechanics of coalescence

Starting point (Scheibl and Heinz [nucl-th/9809092])

$$\frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} = \mathrm{tr} \, \rho_d \rho_{\mathrm{nucl}}$$

 $\rho_{d} = \left| \phi_{d} \right\rangle \left\langle \phi_{d} \right|$ $\rho_{\text{nucl}} = \left| \psi_{p} \psi_{n} \right\rangle \left\langle \psi_{p} \psi_{n} \right|$

Detour: Wigner Functions

1.
$$f^{W}(p,x) = \int \rho(x+y/2, x-y/2)e^{-ipy} dy$$

2. $\int f^{W}(p,x)\frac{dp}{2\pi} = \rho(x,x) = P(x)$
3. $\int f^{W}(p,x) dx = \rho(p,p) = P(p)$

An expression for the deuteron yield

$$\frac{\mathrm{d}^{3}N_{d}}{\mathrm{d}P_{d}^{3}} = \frac{3}{8(2\pi)^{3}} \int \mathrm{d}^{3}r_{d} \int \frac{\mathrm{d}^{3}q \,\mathrm{d}^{3}r}{(2\pi)^{3}} \mathcal{D}(\vec{r},\vec{q}) \quad W_{np}(\vec{p}_{p},\vec{p}_{n},\vec{r}_{p},\vec{r}_{n})$$

$$\text{Internal deuteron Wigner function}$$

$$\mathcal{D}(\vec{r},\vec{q}) = \int \mathrm{d}^{3}\xi \exp\left\{-\mathrm{i}\vec{q}\cdot\vec{\xi}\right\}\varphi_{d}(\vec{r}+\vec{\xi}/2)\varphi_{d}^{*}(\vec{r}-\vec{\xi}/2)$$

$$\varphi_{d}(\vec{r}) = (\pi d^{2})^{-3/4} \exp\left\{-\frac{r^{2}}{2d^{2}}\right\}$$

$$\text{Two-nucleon Wigner function}$$

$$W_{np} = H_{np}(\vec{r}_{n},\vec{r}_{p})G_{np}(\vec{p}_{n},\vec{p}_{p})$$

$$H_{np}(\vec{r}_{n},\vec{r}_{p}) = h(\vec{r}_{n})h(\vec{r}_{p}) \qquad h(\vec{r}) = (2\pi\sigma^{2})^{-3/2} \exp\left\{-\frac{r^{2}}{2\sigma^{2}}\right\}$$

The new coalescence model

Deuteron formation model

$$\frac{\mathrm{d}^3 N_d}{\mathrm{d} P_d^3} = \frac{1}{\gamma} \frac{3\zeta}{(2\pi)^3} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} G_{np}(\vec{q}, -\vec{q}) \,\mathrm{e}^{-q^2 d^2}$$
$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right) \le 1$$

- 1. Two-nucleon momentum distribution
- 2. Size of the deuteron $d = 3.2 \, \text{fm}$
- 3. Spatial distribution factor $\sigma \sim 1 \; {
 m fm}$ free parameter

1. Momentum correlations

$$\vec{q}$$
 \vec{q}

QCD inspired event generators (Here: Pythia 8.2, QGSJET II)

Coalescence probability

$$w = 3\zeta \exp\{-q^2 d^2\}$$

2. Deuteron wave function

 $w = 3\Delta\zeta(d_1)\exp\{-q^2d_1^2\} + 3(1-\Delta)\zeta(d_2)\exp\{-q^2d_2^2\}$

3. Process dependence of σ Point-like processes

Longitudinal spread

- Relevant lengthscale: $L_{\rm had} \sim \gamma L_0 \sim \gamma R_p$
- ► Formation size: $\sigma_{\parallel (e^+e^-)} \sim L_{\rm had} / \gamma \sim R_p \sim 1 \text{ fm}$

Transverse spread

- ► Relevant lengthscale: $\Lambda_{\rm QCD}^{-1}$
- Formation size:

 $\sigma_{\perp(e^+e^-)} \sim \Lambda_{
m QCD}^{-1} \sim 1 \; {
m fm}$

3. Process dependence of σ Geometrical contribution (proton-proton)

Longitudinal spread

- ▶ Relevant lengthscale: γR_p
- Formation size:
 - $\sigma_{\parallel \rm (geom)} \sim \textit{R}_{p} \sim 1~{\rm fm}$

Transverse spread

- Relevant lengthscale: Spread in overlapping parton clouds, $\rho = (\pi R^2) \exp\{-r^2/R^2\}$
- Formation size: $\sigma^2_{\perp (\text{geom})} \sim \langle r_1^2 \rangle_O \langle \bar{r}_1^2 \rangle_O = R_p = 1 \text{ fm}$

Summary of the coalescence models

Standard coalescence model

 $w = \Theta(p_0 - 2q)$

- Phenomenological
- ► Free parameter *p*₀

New model

$$w = 3\zeta(\sigma)\exp\{-q^2d^2\}$$

$$\zeta = rac{d^2}{d^2 + 4 ilde{\sigma}_{\perp}^2} \sqrt{rac{d^2}{d^2 + 4\sigma_{\parallel}^2}} \ ilde{\sigma}_{\perp}^2 = \sigma_{\perp}^2/(\cos^2 heta + \gamma^2\sin^2 heta)$$

- Semi-classical
- Free parameter $\sigma \equiv \sigma_{(e^+e^-)} \simeq \sigma_{pp}/\sqrt{2} \simeq 1 \text{ fm}$

Experimental data: antideuteron spectrum

Proton-proton collisions, ALICE [1709.08522]

MC: Pythia 8.2

 NTNU | Norwegian University of Science and Technology

15

Comparison to experimental data

Experiment	σ [fm]	$\chi^2/(N-1)$	Ref.
pp 7 TeV	1.07	34/19	(Acharya 2018)
<i>pp</i> 2.76 TeV	1.05	5.6/6	(Acharya 2018)
<i>pp</i> 900 GeV	0.97	0.3/2	(Acharya 2018)
<i>pp</i> 53 GeV	1.03	3.3/7	(Alper 1975)
e^+e^- 91 GeV	$1.0\substack{+0.2 \\ -0.1}$	-	(Schael 2006)
$pBe^* E_{prim} = 200 \text{ GeV}$	1.00	2.2/4	(Bozzoli et al. 1978)
$pAI^* E_{prim} = 200 \text{ GeV}$	0.88	2.3/2	(Bozzoli et al. 1978)
Event generators:			

Event generators:

Pythia 8.2 and *QGSJET II

Femtoscopy experiments

Measurable quantity:

$$\mathcal{C}(\vec{q}) = \int \mathrm{d}^3 r \, \mathcal{S}(\vec{r}) |\Psi(\vec{r},\vec{q})|^2$$

 A Gaussian source if often assumed in experiments

$$\mathcal{S}(\vec{r}) \propto \exp\left\{-rac{r^2}{4r_0^2}
ight\}$$

The nucleon Wigner functions predict the baryon source

$$W_{np} \propto \exp\left\{-\frac{r_{\parallel}^2}{4\sigma_{\parallel}^2} - \frac{r_{\perp}^2\cos^2\theta + \gamma^2 r_{\perp}\sin^2\theta}{4\sigma_{\perp}^2}\right\}$$

Experimental data: baryon emission source

Preliminary

Sidenote: Space-time structure in Pythia 8.2

Pythia 8.2 includes now a description of the spacetime structure of a cascade (Ferreres-Solé and Sjöstrand 2018)

Can instead use:

$$w = 3\exp\left\{-\frac{r^2}{d^2} - q^2d^2\right\}$$

Norwegian University of Science and Technology

Detection prospects for cosmic ray antinuclei

Secondary source

$$Q_{pp}^{\text{sec}}(T_{\bar{N}},\vec{r}) = 4\pi n_p(\vec{r}) \int_{T_{\min}^{(p,p)}}^{\infty} \mathrm{d}T_p \, \frac{\mathrm{d}\sigma_{p,p}(T_p,T_{\bar{N}})}{\mathrm{d}T_{\bar{N}}} \Phi_p(T_p,\vec{r})$$

of

Secondary source

Primary source cannot exceed the antiproton spectrum

23

Detection prospects for antideuteron

24

Detection prospects for antideuteron

Detection prospects for antihelium-3

Detection prospects for antihelium-3

The puzzling AMS-02 antihelium events

(S. Ting: CERN Colloquium 24 May 2018)

Summary

- Antinuclei offers a promising method of identifying the nature of exotic physics
- Wigner function based coalecence model:

$$\frac{\mathrm{d}^3 N_d}{\mathrm{d} P_d^3} = \frac{1}{\gamma} \frac{3\zeta}{(2\pi)^3} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \mathrm{e}^{-q^2 d^2} G_{np}(-\vec{q},\vec{q})$$

- It includes constraints on both momentum and space variables, has a semi-classical treatment, has a microphysical picture and includes momentum correlations
- The new model does not change the detection prospects significantly
- The detection of cosmic ray antinuclei may be just around the corner

BACKUP SLIDES

Thermal state in heavy ion collisions

$$W_{p,n}^{\rm th}(\vec{p}_{p,n},\vec{r}_{p,n}) = \frac{3}{4(mT_{\rm k}\sigma_{\rm th}^2)^{3/2}} \exp\left\{-\frac{p_{p,n}^2}{2mT_{\rm k}} - \frac{r_{p,n}^2}{2\sigma_{\rm th}^2}\right\}$$
$$N_d \sim N_n N_p \left(\frac{d^2}{d^2 + 4\sigma_{\rm th}^2}\right)^{3/2} \left(\frac{1}{mT_{\rm k}d^2 + 1}\right)^{3/2}$$

The traditional coalescence model

The formation of a nucleon ${}^{A}_{Z}N$ can be described by the coalescence model (Schwarzschild and Zupančič 1963)

$$E_{A}\frac{\mathrm{d}^{3}N_{A}}{\mathrm{d}P_{A}^{3}} = B_{A}\left(E_{p}\frac{\mathrm{d}^{3}N_{p}}{\mathrm{d}P_{p}^{3}}\right)^{Z}\left(E_{n}\frac{\mathrm{d}^{3}N_{n}}{\mathrm{d}P_{n}^{3}}\right)^{N}\bigg|_{P_{p}=P_{n}=P_{A}/A},$$

where B_A is the coalescence parameter:

$$B_A = A \left(\frac{4\pi}{3} \frac{p_0^3}{m_N}\right)^{A-1}$$
$$B_A \propto V^{A-1}$$

Coalescence of helium-3 and tritium

Helium-3 and tritium formation model

$$\begin{split} \frac{\mathrm{d}^3 N_{\mathrm{He}}}{\mathrm{d} P_{\mathrm{He}}^3} &= \frac{64 s \zeta}{\gamma (2\pi)^3} \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3} \frac{\mathrm{d}^3 p_2}{(2\pi)^3} G_{N_1 N_2 N_3} (-\vec{p_2} - \vec{p_3}, \vec{p_2}, \vec{p_3}) \mathrm{e}^{-b^2 P^2}, \\ \zeta &= \left(\frac{2b^2}{2b^2 + 4\sigma^2}\right)^3, \\ P^2 &= \frac{1}{3} \left[(\vec{p_1} - \vec{p_2})^2 + (\vec{p_2} - \vec{p_3})^2 + (\vec{p_2} - \vec{p_3})^2 \right] \\ &= \frac{2}{3} \left[\vec{p_2}^2 + \vec{p_3}^2 + \vec{p_1} \cdot \vec{p_2} \right]. \end{split}$$

 $b_{^{3}\text{He}} = 1.96 \text{ fm}; \ b_{t} = 1.76 \text{ fm}; \ s = 1/12$

 NTNU | Norwegian University of Science and Technology

Best fit to the ALICE helium-3 data

Improving the deuteron wave function I

The ground state of the deuteron is well described by the Hulthen wave function,

$$\varphi_d(\vec{r}) = \sqrt{\frac{\alpha\beta(\alpha+\beta)}{2\pi(\alpha-\beta)^2}} \frac{\mathrm{e}^{-\alpha r} - \mathrm{e}^{-\beta r}}{r},$$

with $\alpha = 0.23 \mathrm{fm}^{-1}$ and $\beta = 1.61 \mathrm{fm}^{-1}$ (Zhaba 2017).

Two-Gaussian wave function:

$$\varphi_d(\vec{r}) = \pi^{-3/4} \left(i \sqrt{\frac{\Delta}{d_1^3}} e^{-r^2/2d_1^2} + \sqrt{\frac{1-\Delta}{d_2^3}} e^{-r^2/2d_2^2} \right).$$

Improving the deuteron wave function II

Pythia, *pp* collisions at $\sqrt{s} = 7$ TeV

The two-zone propagation model Z R=20 kpc Solar modulation V_{c} ... h=0.1 kpc Н, Не, ... SM r L=4-15 kpc Sec. Prim Diffusive zone -Energy losses -Tertiary sources -Reacceleration

Semi-analytical solution (Maurin et al. [astro-ph/0101231])
 Parameters are constrained using e.g. a B/C study (Aramaki
 NTN105105444000-MAX parameters