News from the Galactic Magnetic Field (...and the Origin of the Amaterasu Particle)

M. Unger (KIT) in collaboration with G.R. Farrar (NYU)

Astro & Theory Seminar, NTNU, Feb 06th 2024

NGC628 M. Krause 2019; T. Stanev ApJ97; JF12 Farrar&Sandstrom

Galactic Magnetism

NGC891, M. Krause MPIfR

$\mathcal{O}(\mu \mathbf{G})$ large-scale coherent fields! $u_B \approx u_{\text{turb}} \approx u_{\text{CR}}$

Proto-Galactic?

shearing by differential rotation

FIG. 1b

but:

- winding problem ($P_{\rm rot} \approx 0.2$ Gyr at r_{\odot})
- decay of field in turbulent diffusion $\mathcal{O}(10^8 \text{yr})$

 Ω effect: toroidal field from poloidal seed field

Love, J. J., 1999. Astronomy & Geophysics, 40, 6.14-6.19.

 α effect: poloidal field from turbulence and convection

Dynamo Action?

Galaxy simulations:

Auriga, Pakmor+MNRAS17

IllustrisTNG, Marinacci+MNRAS17

Effect Galactic Magnetic Field on Charged Particles (Cosmic Rays)

(anisotropic) diffusion of low energy cosmic rays

deflection of ultrahigh-energy cosmic rays

 $\rho = 10 \text{TV}$ -15 y [kpc] 5 -⁵ പ 15 15 -15 x [kpc] log(n) [a.u.] Merten+JCAP17

Observational Tracers of the Astrophysical Magnetic Fields

Modeling the Coherent Galactic Magnetic Field (GMF)

Aim: Describe large-scale structure of GMF with simple parametric forms

Observables:

adapted from Hasegawa+13 and Pelgrims+18

Popular GMF Models:

	S97	Jaffe10*	PT11	JF12	Planck16	TF17**
parameter fit	×	1	1	1	×	1
extragalactic RMs	×	1	1	 Image: A second s	×	1
polarized synchrotron	×	1	×	1	1	X
polarized dust	×	×	×	X	1	X
$\nabla \mathbf{B} = 0$	X	X	X	1	X	1

Outline

- RM and Synchrotron Data
- Thermal & CR Electrons
- New GMF Model(s)
- Results and Implications
- (Amaterasu Particle)

Outline

- RM and Synchrotron Data
- Thermal & CR Electrons
- New GMF Model(s)
- Results and Implications
- (Amaterasu Particle)

Extragalactic Rotation Measures (PT11, JF12)

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

liaht

agnetic field

Plasma

Extragalactic Rotation Measures 2023

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

light

Magnetic field

Plasma

- antenna temperature: $T_{syn} \propto \nu^{-(p+3)/2} \equiv \nu^{\beta_S}$
- electron spectral index p: ~ 2 at source, ~ 3 after cooling
- $\beta_S \sim -3 \rightarrow T_{\rm syn}(20 \ {\rm Hz})/T_{\rm syn}(30 \ {\rm Hz}) \approx 3.4$

calibration uncertainty? cosmic-ray spectral index?

Outline

- RM and Synchrotron Data
- Thermal & CR Electrons
- New GMF Model(s)
- Results and Implications
- (Amaterasu Particle)

Thermal Electron Models

Puter phase (periods)

112 pulsar DMs

189 pulsar DMs

Cordes&Lazio arXiv:0207156 Yao, Manchester & Wang, ApJ 2017 14/42

DRAGON calculation constrained by local lepton flux and D_0/H from B/C http://github.com/cosmicrays/DRAGON

Cosmic-Ray Electron Model

- $D_0/H = \text{const from B/C}$
- halo half-height H currently not well constrained Weinrich+20, Evoli+20, Maurin+22

\rightarrow large uncertainty in vertical $n_{\rm cre}$ profile!

homogenous and isotropic diffusion $D_0 \propto R^{\delta}$ (rigidity R)

Outline

- RM and Synchrotron Data
- Thermal & CR Electrons
- New GMF Model(s)
- Results and Implications
- (Amaterasu Particle)

New Disk Field Model

- divergence-free Fourier-expansion of $B_{\phi}(r)$ at reference radius
- avoids radial discontinuities
- free pitch angle and "magnetic arms" (number of Fourier modes)

Halo X-Field

JF12 Ferriere&Terral14 UF23 z/kpc z/kpc z/kpc $3_{r_2}/\mu G$ - 4 r/kpc r/kpc r/kpc

• fix JF12 discontinuities at z = 0 and transition to $\theta_X = 49^{\circ}$

RM and Q&U of "base model"

Data and Model

- 6520 data points
- 15-20 parameters
- typical reduced $\chi^2/n_{\rm df}$ = 1.2...1.3, depending on model variation

Data and Model

 $\chi^2/{\rm ndf} = 7923/6500 = 1.22$

Model Variations

8 variations (subset giving the greatest diversity of CR deflection predictions):

name	variation	χ^2/ndf
base	fiducial model	1.22
xr	radial dependence of X-field	1.30
spur	replace grand spiral by local spur (Orion arm)	1.23
ne	change thermal electron model (NE2001 instead of YMW16)	1.19
twist	unified halo model via twisted X-field	1.26
nbcorr	n_e -B correlation	1.22
cre	cosmic-ray electron vertical scale height	1.22
syn	use COSMOGLOBE synchrotron maps	1.50

- 1 kpc - 2 kpc - 4 kpc - 6 kpc - 8 kpc - 10 kpc

Outline

- RM and Synchrotron Data
- Thermal & CR Electrons
- New GMF Model(s)
- Results and Implications
- (Amaterasu Particle)

Magnetic Pitch Angle

- fitted magnetic pitch angle in disk $(11 \pm 1)^{\circ}$ (error dominated by n_e)
- pitch angle of local arm $(11.4 \pm 1.9)^{\circ}$ (fit of HMSFR with parallaxes)

Local Spur or Global Spiral?

"base"

 \rightarrow both models describe data equally well!

Results – Striation or Correlation? Longstanding problem: *B*(syn) < *B*(RM)

anisotropic/orderd/striated b?

anti-correlation b- n_e (pressure equ.)?

\rightarrow both models describe data equally well!

Unified Halo Model

- evolve X-field via ideal induction equation $\partial_t \mathbf{B} = \nabla \times (\mathbf{v}_{rot} \times \mathbf{B})$
- radial and vertical shear of Galactic rotation generates toroidal field

- no separate X- and torodial halo needed!
- "twisting time": $t = 54.7 \pm 1.1$ Myr \rightarrow effective time (steady state when including dissipation?)

Cosmic-Ray Deflections

- D. Harari
- Larmor radius of charged particle in B-field

$$r = 1.1 \,\mathrm{kpc} \, \frac{R/10^{18} \,\mathrm{V}}{B/\mu\mathrm{G}}$$

- rigidity $R = \frac{cp}{eZ} \stackrel{\text{\tiny e=C=1}}{=} \frac{E}{Z}$
- typical GMF deflections (JF12)

$$\theta_{\rm coh} \sim 3^\circ \left(\frac{R}{10^{20}~{\rm V}}\right)^{-1}$$

Deflections at 20 EV (base model) (backtracking)

60 degree 50 40 angle 30 deflection 20 10 Ω

Deflections at 20 EV (model ensemble and JF12) (backtracking)

JF12 base ехрХ antopi (door of a section and of door of a section and of (door of a section and of (door of a section and a section 2 4 8 8 9 2 4 8 8 9 twistX spur neCL 3 2 2 2 2
 4 2 2 2 3
 5 3 2 4 2 3
 6 4 5 5 5 50 40 50 50 10 40 50 50 10 10 30 20 10 cre10 synCG nebCor 8 2 2 2 2 2 2 2 00000 (00000) (000000) 000000 00000 (0000000) 0000000 00000 (000000) 50 40 50 50 10

Deflections at 20 EV (backtracking)

Summary

New Model(s) of the Coherent GMF

- full-sky RM data
- latest synchrotron sky maps
- improved auxillary models (n_e and n_{cre})
- smooth disk-field model
- unified halo model

Main Results:

- JF12 dipolar X-field robust <u>dynamo</u>?
- magnetic pitch \sim spiral pitch $\frac{1}{2}$ coherent?
- local spur (Orion) or Grand Spiral?
- $n_e B$ anti-corr. is alternative to striation \rightarrow larger *B* estimates
- GMF model ensemble → uncertainties for deflection, diffusion, axion conversion,...

Outlook:

- turbulent field using I_{syn} + variances
- pulsar RMs, low-frequency QU, dust pol., ...
- foreground modeling local bubble, loops,. 32/42

_ The Guardian

'What the heck is going on?' Extremely high-energy particle detected falling to Earth

SPIEGEL Wissenschaft

Ultrahochenergetisches kosmisches Teilchen traf die Erde

OMG! Schon wieder!

nature

The most powerful cosmic ray since the Oh-My-God particle puzzles scientists

= CIEB

A Ray From Space Hit Earth with Such Incredible Power That Scientists Named It After a God

The source of the Amaterasu particle, named after the Japanese sun goddess, is a "big mystery."

Science

RESEARCH ARTICLE ASTROPARTICLE PHYSICS

An extremely energetic cosmic ray observed by a surface detector array

(B) Date: 27 May 2021 Time: 10:35:56 474337 UTC

STATUS IS ADD IN THE SDOGT 12.8 MIR of 2.2 km STREET, St. 9 MIP or 17 km

> 15 20

STATE ALL MID # 1.93m

SD0628 8.2 MIP at 2.6 km

TELESCOPE ARRAY COLLABORATION*+, R. U. ABBASI, M. G. ALLEN, R. ARIMURA, J. W. BELZ, D. R. BERGMAN, S. A. BLAKE, B. K. SHIN, I. J. BUCKLAND, I...I. AND Z. ZUNDEL

(A) Surface detector array of TA


```
• E = \left(2.44 \pm 0.29 \,(\text{stat.}) \,{}^{+0.51}_{-0.76} \,(\text{syst.})\right) \times 10^{20} \,\text{eV}
```

• if Fe:
$$E_{\text{nom}} = (2.12 \pm 0.25) \times 10^{20} \text{ eV}$$

• Fe at
$$-1\sigma_{\text{syst.}}$$
: $E_{\text{low}} = (1.64 \pm 0.19) \times 10^{20} \text{ eV}$

$\begin{array}{ll} \mbox{Simplest Assumption: Fe Nucleus from Standard Accelerator} \\ (\mathcal{R}_{max} \sim 10^{18.6-18.7} \mbox{ V}) & \mbox{Peters Cycle:} \end{array}$

TA 14-year SD spectrum, Kim et al, EPJ Conf 283 (tm2023) 02005

Pierre Auger Coll. 2023

Photodisintegration in source:

MU, Farrar, Anchordoqui PRD15 35/42

M Propagation of Fe in Extragalactic Photon Fields horizon between 8 and 50 Mpc • factor 240 uncertainty source volume! $E_{low} \pm \sigma_{stat}$ $E_{nom} \pm \sigma_{stat}$ 1.6 10² 1.4 1.2 $f_{att} = n(D)/n(0)$ 0.8 10 0.6 DITEO 0.4 0.2 1.5 2.5 1 2 3 $E_{Earth} / 10^{20} \text{ eV}$

propagation distance D / Mpc

36/42

Arrival Direction

localization uncertainty: 6.6% of 4π or 2726 deg²

uncertainty of coherent deflection, random field, Galactic variance, TA energy scale, statistical uncertainty of E

Distribution of galaxies up to D=150 Mpc

 $E_{\text{low}} - 2\sigma$, D_{0.1}=72 Mpc

$E_{\text{low}} - 1 \sigma$, D_{0.1}=42 Mpc

E_{low} , D_{0.1}=25 Mpc

E_{nom} , D_{0.1}=10 Mpc

Amaterasu Particle

- simplest assumption: Fe nucleus
- localization uncertainty (using UF23 ensemble): \rightarrow direction within 2726 deg² (6.6% of 4 π)
- horizon between 8 and 50 Mpc
- accurate energy essential! (both, stat. and syst.!)
- none of the "usual suspects" within localization uncertainty
- starburst galaxy NGC 6946? (flux proxy is 10% of NGC4945 and M82)
- Andromeda (M31)?
- transient event in an otherwise undistinguished galaxy?