Radio View on Gamma-Ray Burst Extremes

Alexander van der Horst

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

NTNU – Department of Physics 22 February 2023

Explosive Transients Galore

Gamma-Ray Bursts

Stellar deaths

Neutron stars

Black holes

(and more...)

Supernovae

Compact binary mergers

Magnetars

X-ray binaries

Physics of Explosive Transients

Physics in extreme conditions:

- •Extreme gravity → black holes
- •Extreme densities → neutron stars
- •Extreme magnetic fields → magnetars
- Extreme energies → stellar explosions
- •Extreme outflow velocities \rightarrow jets
- •Extreme particle acceleration \rightarrow shocks

Time-Domain, Multi-Wavelength & Multi-Messenger Astronomy!

GRBs: Multi-Wavelength Transients

GRB 130427A (Perley et al. 2014)

Long GRBs: Massive Stellar Explosions

Galama et al. 1998

10

100

10

Days after Feb 28.1236 UT

100

10

100

Galama et al. 1999

Short GRBs: Compact Binary Mergers

Gehrels et al. 2005

LIGO & Virgo Collaborations, Fermi GBM, INTEGRAL

Multi-Wavelength & Multi-Timescale

GRB 080916C (Abdo et al. 2009)

GRB 030329 (van der Horst et al. 2008)

Relativistic Blast Wave Model

Meszaros & Rees 1992; Rees & Meszaros 1992 (Figure: Gomboc 2012)

- Afterglow synchrotron emission \rightarrow relativistic beaming: $\vartheta_{rel} = 1/\Gamma$
- Collimated relativistic outflow \rightarrow jet opening angle: ϑ_0
- Initially $\vartheta_{rel} << \vartheta_0$, but blast wave decelerating

Modeling Spectra & Light Curves

- Radio crucial: pin down evolution of peak flux, peak frequency, self-absorption frequency
- Scintillation: source size constraints, but with caveats

Physical Parameters

Explosion parameters

- Blast wave energy
- Density of ambient medium
- Structure of ambient medium
- Jet opening angle
- Radiation parameters
 - Electron energy distribution
 - Energy in electrons
 - Energy in magnetic field
- Observer parameters
 - Observing angle
 - Redshift & luminosity distance
 - Observer time & frequency

GRB 970508 (Leventis, van der Horst, van Eerten & Wijers 2013)

Physical Parameter Distributions

- Broadband modeling: large spread, between and within various studies
- Only optical & X-rays: *p* and density structure not universal

Cenko et al. 2011; Granot & van der Horst 2014

GRB 190114C: GHz to TeV

10-7

10⁻⁸

10⁻⁹

68–110 s

Flux (erg cm⁻² s⁻¹)

 17 orders of magnitude in frequency: synchrotron & synchrotron self-Compton

GRB 190829A: GHz to TeV

- Well-sampled radio light curves: forward & reverse shock
- Very-high energy emission GRBs: same parent distribution as other radio-detected GRBs

Breakthroughs in Modeling

observer time (days)

van Eerten, van der Horst & MacFadyen 2012

Constraints from X-Ray Light Curves

• Using simulations-based modeling: p and ϑ_0 not universal

10

8

2ŀ

8.0

 θ_{obs}

Median Values Passing Cut

- ϑ₀ / ϑ_{obs} broad distribution
 - Two jet breaks instead of one
 - Smearing of (or missing) jet breaks
 - Beaming-corrected energetics incorrect

Advanced Modeling Methodology

- Include various jet structures, driven by GW 170817
- Include more cooling mechanisms, e.g., Synchrotron Self-Compton
- New statistical techniques, e.g., Gaussian Processes → take systematics in the data into account

Jacovich, Beniamini & van der Horst 2020

Modeling Spectra & Light Curves

- Radio crucial: pin down evolution of peak flux, peak frequency, self-absorption frequency
- Scintillation: source size constraints, but with caveats

Electron Acceleration in GRB Shocks

- Basic assumptions (most relevant for radio regime):
 - Synchrotron emission from relativistic electrons
 - Electrons accelerated by relativistic shock
 - Power-law energy / Lorentz factor distribution
- Physical & observed parameters:
 - ε_e: fraction of shock energy in accelerated electrons
 - ξ_e : fraction of electrons in power-law energy distribution
 - γ_m : minimum Lorentz factor of the power-law distribution
 - ν_m : peak frequency, depends on shock Lorentz factor (and thus time) and physical parameters (as does peak flux)
- Radio peaks (light curves and/or SEDs) → strong and unique constraints on electron acceleration in relativistic shocks

GRB Microphysics from Radio Peaks

- Peak flux, time & frequency → strong constraints on electron acceleration in GRB blast waves
- Parameter ψ strongly depends on ε_e and ξ_e (weakly on others)
- $\varepsilon_e \xi_e^{-3/2} = 0.16 (ISM) / 0.21 (Wind)$
- $\sigma_{\psi,log} = 0.32 \, (ISM) \, / \, 0.28 \, (Wind)$
- Microphysics universal in GRBs? (caution: possible selection bias)

$$\Psi_{\text{ISM}} = \left(\frac{261.4 \ (1+z)^{1/2} \ \nu_p \ t_p^{3/2} \ E_{\gamma,iso,53}^{1/2}}{10^{15} \ d_{28}^2 \ F_{\nu_p} \ \max(1, t_p/t_j)^{1/2}}\right)^{1/2}$$
$$= \frac{(p-2)}{0.177 \ (p-1)} \left(\frac{p-0.67}{p+0.14}\right)^{1/2}$$
$$\times \left(\frac{1-\epsilon_{\gamma}}{\epsilon_{\gamma}}\right)^{-1/4} n_0^{-1/4} \epsilon_e \ \xi_e^{-3/2}$$

GRB Microphysics from Radio Peaks

- Peak flux, time & frequency → strong constraints on electron acceleration in GRB blast waves
- Parameter χ strongly depends on γ_m and ξ_e (weakly on others)
- $\gamma_m \xi_e^{-1/2} = 53 t_d^{-3/8} (ISM) / 96 t_d^{-1/4} (Wind)$
- $\sigma_{\chi,log} = 0.36 (ISM) / 0.29 (Wind)$
- Determining γ_m in GRBs unique (ν_m not accessible in other sources)

$$\chi_{\rm ism} = 266 \ \Psi_{\rm ism} \ E_{\gamma,\rm iso,53}^{1/8} \ (z+1)^{3/8} \ t_d^{-3/8}$$
$$= \left(\frac{p-0.67}{0.66 \ (p+0.14)}\right)^{1/2} \left(\frac{\epsilon_{\gamma}}{1-\epsilon_{\gamma}}\right)^{3/8} \ n_0^{-1/8} \ \gamma_m \ \xi_e^{-1/2}$$

GRB Microphysics from Radio Peaks

- Peak flux, time & frequency → strong constraints on electron acceleration in GRB blast waves
- Constraints: 0.01 < ε_e < 0.2 and 0.1 < ξ_e < 1 (with dependence)

Fast & Systematic Radio Follow-Up

- AMI Large Array at 15 GHz \rightarrow first responses: 4-5 minutes
- System developed for other (new) radio observatories

1030

1029

 10^{-2}

 10^{-1}

100

Days post-burst/(1+z)

10¹

10²

Systematic AMI follow-up \rightarrow 50% of Swift GRBs detected to 0.10 – 0.15 mJy

Searching for Coherent Radio Emission

- LOFAR observations starting few minutes after trigger of GRB 180706A
- Search for coherent emission, FRBs, etc.
- Propagation effects important
- Complementary to searches in AARTFAAC (very large field of view, core of LOFAR)
- Similar efforts for MWA (GRB 150424A; Kaplan et al. 2015) and LWA (GRB 170112A)
- Various models proposed, but large uncertainties in predicted flux levels

Rowlinson et al. 2019

GRB 210702A: Early Radio Brightening

Anderson et al. 2022

- ATCA: 11-hours, starting after 5.4 hours
- Extreme brightening & spectral variations
- Scintillation → earliest source size limit

Conclusions

- Gamma-ray bursts: multi-timescale, multi-wavelength, and multi-messenger
- Recent developments in observations
 - Better spectral and temporal coverage
 - High-energy gamma-ray (>1 TeV) detections
 - Automated early radio observations (with long integrations)
- Recent developments in modeling
 - Fitting hydrodynamics simulations to broadband data
 - Advanced statistical/modeling methodologies
 - Incorporating more emission mechanisms
 - New diagnostic tools for parameter estimation
 - (Quasi-)universality of electron acceleration?