On-the-Fly News Recommendation Using Sequential Patterns

Mozhgan Karimi, Boris Cule, and Bart Goethals ADReM Research Group, University of Antwerp, Belgium

Challenges of News Recommender Systems

- News articles are published constantly
- Recommended items need to be fresh
- Users are typically not logged in
 - Thus, there is often no long-term history
- News articles are often consumed in a specific order

Research Goal

- How to use the community's news consumption patterns to predict what the current user wants to read next?
- Traditional Sequential Pattern Mining (SPM) approaches could not deal with breaking news or recent community click trends due to long training times
- An SPM approach is needed that can incrementally update its recommendation model with every incoming click

Sequential Pattern Mining

For a news reading session

we want to extract every (sub-) pattern like so:

A B A	A B C	A C	BC	A B C
-------	-------	-----	----	-------

- Equivalent to calculating the power set of the session
- How to do this incrementally based on session snapshots?

Click	Session Fragment	Intermediary	Power Set Fragment
Α	Α		

Click	Session Fragment	Intermediary	Power Set Fragment
Α	Α		

Click	Session Fragment	Intermediary	Partial Power Set Fragment
Α	Α		Α

7

Click	Session Fragment	Intermediary	Power Set Fragment
A B	A A B		A

Recommendation Model

- To generate recommendations from extracted patterns efficiently, patterns need to be stored in a model that allows:
 - ... quick updates
 - ... quick calculation of recommendation scores
- Solution: An incrementally updateable pattern tree model

University of Antwerp

 Given a session (e.g., A), build the power set (in this case also A)

 Given a session (e.g., A), build the power set (in this case also A)

Then, traverse the tree based on every sub-pattern of the user's current session and aggregate confidence scores for each candidate item *i* calculated like so:

 Given a session (e.g., A), build the power set (in this case also A)

► Then, traverse the tree based on every sub-pattern of the user's current session and aggregate confidence scores for each candidate item *i* calculated like so: $conf(i \in P) = \frac{frequency(P)}{frequency(P \setminus i)}$

- Given a session (e.g., A), build the power set (in this case also A)
- ► Then, traverse the tree based on every sub-pattern of the user's current session and aggregate confidence scores for each candidate item *i* calculated like so: $conf(i \in P) = \frac{frequency(P)}{frequency(P \setminus i)}$

B /

2

- Given a session (e.g., A), build the power set (in this case also A)
- ► Then, traverse the tree based on every sub-pattern of the user's current session and aggregate confidence scores for each candidate item *i* calculated like so: $conf(i \in P) = \frac{frequency(P)}{frequency(P \setminus i)}$
- Thus, conf(B) = 2/3 and conf(C) = 1/3

B /

B

2

Tweaks

- Default approach: Seq
- Approach that reduces the support values of "stale" patterns based on a click queue implementation: Seq_r
- Approach with a slightly modified scoring method that penalizes candidate items from longer patterns: Seq_p
- Combination of recency and penalization varieties: Seq_{pr}

Evaluation

The experiments are designed based on the StreamingRec framework, which simulates real-time recommendation and allows algorithms to learn incrementally

Michael Jugovac, Dietmar Jannach, and Mozhgan Karimi. 2018. StreamingRec: A Framework for Benchmarking Stream-based News Recommenders. In Proceedings of the 12th Conference on Recommender Systems

 Evaluation on two real-world data sets from Plista and Outbrain

Results

University of Antwerp

Conclusions

- The proposed approach is more effective in terms of F1 than previous NRS methods
 - Also: Much more efficient (~0.2 ms per request)
- For more in-depth results, come to the poster!
- Future work
 - Weighted scoring for candidate items
 - Personalized variant that considers user history

