
On-the-Fly News Recommendation
Using Sequential Patterns

Mozhgan Karimi, Boris Cule, and Bart Goethals
ADReM Research Group, University of Antwerp, Belgium

1

Challenges of News Recommender Systems

‣ News articles are published constantly
‣ Recommended items need to be fresh
‣ Users are typically not logged in
‣ Thus, there is often no long-term history

‣ News articles are often consumed in a specific order

2

Research Goal

‣ How to use the community’s news consumption patterns to
predict what the current user wants to read next?

‣ Traditional Sequential Pattern Mining (SPM) approaches could
not deal with breaking news or recent community click trends
due to long training times

‣ An SPM approach is needed that can incrementally update its
recommendation model with every incoming click

3

Sequential Pattern Mining

‣ For a news reading session

we want to extract every (sub-) pattern like so:

‣ Equivalent to calculating the power set of the session
‣ How to do this incrementally based on session snapshots?

A B C

A B CA B B C A B CA C

4

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

AA

5

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

AA

6

Incremental Power Set Creation

Click
Session

Fragment Intermediary Partial Power Set Fragment

AA A

7

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

A B

A

B

A A

8

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

A B

A

B

A

A

A

9

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

A B

A

B

A

A

A

B A B

10

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

A B C

A B

A

C

B

A

B A B

A

A

A

B A B

11

Incremental Power Set Creation

Click
Session

Fragment Intermediary Power Set Fragment

A B C

A B

A

C

B

A

B CA B B C A B CA C

A

A

A

B A B

12

Click
Session

Fragment Intermediary Power Set Fragment

Incremental Power Set Creation

A B C

A B

A

C

B

C

A

B A B B C A B CA C

A

A

A

B A B

C B C A B CA CB A BA‣ Expected output:

13

Recommendation Model

‣ To generate recommendations from extracted patterns
efficiently, patterns need to be stored in a model that allows:
‣ … quick updates
‣ … quick calculation of recommendation scores

‣ Solution: An incrementally updateable pattern tree model

14

Pattern Tree Model

S1 A B

A B

A

B

15

Pattern Tree Model

A / 1
S1 A B

A B

A

B

16

Pattern Tree Model

A / 1 B / 1
S1 A B

A B

A

B

17

Pattern Tree Model

A / 1 B / 1

B / 1

S1 A B

A B

A

B

18

Pattern Tree Model

A / 1 B / 1

B / 1

S1 A B

A B

A

B

S2 A C

A C

A

C

19

Pattern Tree Model

A / 2 B / 1

B / 1

S1 A B

A B

A

B

S2 A C

A C

A

C

20

Pattern Tree Model

A / 2 B / 1 C / 1

B / 1

S1 A B

A B

A

B

S2 A C

A C

A

C

21

Pattern Tree Model

A / 2 B / 1 C / 1

B / 1 C / 1

S1 A B

A B

A

B

S2 A C

A C

A

C

22

Recommendation Scoring

‣ Given a session (e.g.,),
build the power set
(in this case also)

A / 3 B / 2 C / 1

B / 2 C / 1

A

A

23

Recommendation Scoring

‣ Given a session (e.g.,),
build the power set
(in this case also)

‣ Then, traverse the tree based on
every sub-pattern of the user’s current session and aggregate
confidence scores for each candidate item 𝑖 calculated like so:

A / 3 B / 2 C / 1

B / 2 C / 1

A

A

24

Recommendation Scoring

‣ Given a session (e.g.,),
build the power set
(in this case also)

‣ Then, traverse the tree based on
every sub-pattern of the user’s current session and aggregate
confidence scores for each candidate item 𝑖 calculated like so:

𝑐𝑜𝑛𝑓 𝑖 ∈ 𝑃 = ൘
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃 \ 𝑖

A / 3 B / 2 C / 1

B / 2 C / 1

A

A

25

Recommendation Scoring

‣ Given a session (e.g.,),
build the power set
(in this case also)

‣ Then, traverse the tree based on
every sub-pattern of the user’s current session and aggregate
confidence scores for each candidate item 𝑖 calculated like so:

𝑐𝑜𝑛𝑓 𝑖 ∈ 𝑃 = ൘
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃 \ 𝑖

A / 3 B / 2 C / 1

B / 2 C / 1

A

A

26

Recommendation Scoring

‣ Given a session (e.g.,),
build the power set
(in this case also)

‣ Then, traverse the tree based on
every sub-pattern of the user’s current session and aggregate
confidence scores for each candidate item 𝑖 calculated like so:

𝑐𝑜𝑛𝑓 𝑖 ∈ 𝑃 = ൘
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃 \ 𝑖

‣ Thus, 𝑐𝑜𝑛𝑓(𝐵) = 2/3 and 𝑐𝑜𝑛𝑓(𝐶) = 1/3

A / 3 B / 2 C / 1

B / 2 C / 1

A

A

27

Tweaks

‣ Default approach: Seq
‣ Approach that reduces the support values of “stale” patterns

based on a click queue implementation: Seqr
‣ Approach with a slightly modified scoring method that

penalizes candidate items from longer patterns: Seqp
‣ Combination of recency and penalization varieties: Seqpr

28

Evaluation

‣ The experiments are designed based on the StreamingRec
framework, which simulates real-time recommendation and
allows algorithms to learn incrementally

Michael Jugovac, Dietmar Jannach, and Mozhgan Karimi. 2018. StreamingRec: A Framework
for Benchmarking Stream-based News Recommenders. In Proceedings of the 12th Conference on
Recommender Systems

‣ Evaluation on two real-world data sets
from Plista and Outbrain

29

Results

0.0

0.1

0.2

0.3

0.4

F1 MRR

30

Conclusions

‣ The proposed approach is more effective in terms of F1
than previous NRS methods
‣ Also: Much more efficient (~0.2 ms per request)

‣ For more in-depth results, come to the poster!

‣ Future work
‣ Weighted scoring for candidate items
‣ Personalized variant that considers user history

