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Challenges of News Recommender Systems

‣ News articles are published constantly
‣ Recommended items need to be fresh
‣ Users are typically not logged in
‣ Thus, there is often no long-term history

‣ News articles are often consumed in a specific order
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Research Goal

‣ How to use the community’s news consumption patterns to 
predict what the current user wants to read next? 

‣ Traditional Sequential Pattern Mining (SPM) approaches could 
not deal with breaking news or recent community click trends 
due to long training times

‣ An SPM approach is needed that can incrementally update its 
recommendation model with every incoming click 
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Sequential Pattern Mining

‣ For a news reading session

we want to extract every (sub-) pattern like so:

‣ Equivalent to calculating the power set of the session
‣ How to do this incrementally based on session snapshots?
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Recommendation Model

‣ To generate recommendations from extracted patterns 
efficiently, patterns need to be stored in a model that allows:
‣ … quick updates
‣ … quick calculation of recommendation scores

‣ Solution: An incrementally updateable pattern tree model
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Pattern Tree Model
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Pattern Tree Model
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Pattern Tree Model
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Pattern Tree Model
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Pattern Tree Model
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Recommendation Scoring

‣ Given a session (e.g.,       ),
build the power set 
(in this case also       )

A / 3 B / 2 C / 1

B / 2 C / 1

A

A



23

Recommendation Scoring

‣ Given a session (e.g.,       ),
build the power set 
(in this case also       )

‣ Then, traverse the tree based on 
every sub-pattern of the user’s current session and aggregate 
confidence scores for each candidate item 𝑖 calculated like so:

A / 3 B / 2 C / 1

B / 2 C / 1

A

A



24

Recommendation Scoring

‣ Given a session (e.g.,       ),
build the power set 
(in this case also       )

‣ Then, traverse the tree based on 
every sub-pattern of the user’s current session and aggregate 
confidence scores for each candidate item 𝑖 calculated like so:

𝑐𝑜𝑛𝑓 𝑖 ∈ 𝑃 = ൘
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃 \ 𝑖

A / 3 B / 2 C / 1

B / 2 C / 1

A

A



25

Recommendation Scoring

‣ Given a session (e.g.,       ),
build the power set 
(in this case also       )

‣ Then, traverse the tree based on 
every sub-pattern of the user’s current session and aggregate 
confidence scores for each candidate item 𝑖 calculated like so:

𝑐𝑜𝑛𝑓 𝑖 ∈ 𝑃 = ൘
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃 \ 𝑖

A / 3 B / 2 C / 1

B / 2 C / 1

A

A



26

Recommendation Scoring

‣ Given a session (e.g.,       ),
build the power set 
(in this case also       )

‣ Then, traverse the tree based on 
every sub-pattern of the user’s current session and aggregate 
confidence scores for each candidate item 𝑖 calculated like so:

𝑐𝑜𝑛𝑓 𝑖 ∈ 𝑃 = ൘
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃 \ 𝑖

‣ Thus, 𝑐𝑜𝑛𝑓(𝐵) = 2/3 and 𝑐𝑜𝑛𝑓(𝐶) = 1/3
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Tweaks

‣ Default approach: Seq
‣ Approach that reduces the support values of “stale” patterns 

based on a click queue implementation: Seqr
‣ Approach with a slightly modified scoring method that 

penalizes candidate items from longer patterns: Seqp
‣ Combination of recency and penalization varieties: Seqpr
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Evaluation

‣ The experiments are designed based on the StreamingRec
framework, which simulates real-time recommendation and 
allows algorithms to learn incrementally

Michael Jugovac, Dietmar Jannach, and Mozhgan Karimi. 2018. StreamingRec: A Framework 
for Benchmarking Stream-based News Recommenders. In Proceedings of the 12th Conference on 
Recommender Systems

‣ Evaluation on two real-world data sets 
from Plista and Outbrain
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Results
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Conclusions

‣ The proposed approach is more effective in terms of F1 
than previous NRS methods
‣ Also: Much more efficient (~0.2 ms per request)

‣ For more in-depth results, come to the poster!

‣ Future work
‣ Weighted scoring for candidate items
‣ Personalized variant that considers user history


