On the Importance of News Content Representation in Hybrid Neural Session-based Recommender Systems

Gabriel Moreira^{1,2}, Dietmar Jannach³, Adilson Cunha²

¹CI&T, Brazil

² ITA - Brazilian Aeronautics Institute of Technology

RQ1. What is the value of leveraging content information on hybrid neural session-based news recommendation?

RQ2. To what extent does the choice of the mechanism for encoding the article's text content affect recommendation performance?

News Recommender Systems Challenges

- 1. Preferences shift
- 2. Sparse user profiles
- 3. Fast growing number of items
- 4. Accelerated item's value decay

News Recommender Systems Challenges

- 1. Preferences shift
- 2. Sparse user profiles
- 3. Fast growing number of items
- 4. Accelerated item's value decay

/					
	Percentile of # clicks	Article Age			
	10%	< 4 hours			
	25%	< 5 hours			
	50%	< 8 hours			
	75%	< 14 hours			
	90%	< 26 hours			
Articles age at click time distribution (G1 dataset)					

News Recommender Systems Challenges

- 1. Preferences shift
- 2. Sparse user profiles
- 3. Fast growing number of items
- 4. Accelerated item's value decay

	Percentile of # clicks	Article Age
	10%	< 4 hours
	25%	< 5 hours
	50%	< 8 hours
	75%	< 14 hours
	90%	< 26 hours
A	Articles age at clic (G1 da	ck time distribution ataset)

Permanent User and Item Cold-Start Problem

Task: Next-click prediction for session-based recommendation

Recommendable items

CHAMELEON - A Deep Learning Meta-Architecture for News Recommendation ^[1]

- Designed to provide **session-based recommendation** in the **news domain**
- **Hybrid** recommendation approach, which tackles the item and user cold start problem leveraging **textual content**, the **article context** (e.g., recent popularity and recency) and the **user context** (e.g. time, location, device, session clicks).
- Models the sequence of session clicks using an **RNN**
- Trained on a listwise ranking approach, designed to allow the **recommendation** of fresh articles without retraining.

Experiments settings with CHAMELEON

Alternative content encoding techniques

Technique	Input	Description
No-ACE	None	In this setting, no content representation is used as input.
Supervised (t	arget = artic	le category)
CNN	word2vec	A 1D CNN-based model.
GRU	word2vec	A GRU-based model.
Unsupervised	1	
LSA	Tokenized text	The Latent Semantic Analysis (LSA) (Deerwester, 1990).
W2V*TF-IDF	word2vec	TF-IDF weighted word embeddings.
doc2vec	Tokenized text	Paragraph Vectors (Le, 2014).

Recommendation evaluation

Task: For each item within a session, **predict the next-clicked item** from a set composed by the positive sample (read article) and **50 negative samples**.

Metrics:

Accuracy	HR@10	Hit Rate
	MRR@10	Mean Reciprocal Rank
Coverage	COV@10	# recommended articles @ top-n # recommendable articles
Novelty	ESI-R@10	The negative log of the normalized popularity of the top-n ranked items

Baseline algorithms

Frequent patterns methods

- **CO** A simple method of co-occurrence based on association rules of length two.
- **SR** Sequential rules of size two.

kNN methods

Item-kNN Most similar articles to the last read one, in terms of the cosine similarity between the vector of their occurrence in sessions.

Non-personalized methods

- **RP** Recently Popular Most viewed articles during the last hour.
- **CB** Content-Based Most similar articles (content embedding) to the last user click.

Datasets

16 days of logged user interactions

	Language	users	sessions	clicks	articles
G1 (globo.com)	Portuguese	322 k	1,048 k	2,988 k	46 k
Adressa (adressa.no)	Norwegian	314 k	982 k	2,648 k	13 k

Datasets

16 days of logged user interactions

	Language	users	sessions	clicks	articles
G1 (globo.com)	Portuguese	322 k	1,048 k	2,988 k	46 k
Adressa (adressa.no)	Norwegian	314 k	982 k	2,648 k	13 k

G1 dataset

Recommender	HR@10	MRR@10	COV@10	ESI-R@10
CHAMELEON (LSA)	0.6686*	0.3423*	0.6452	6.3833
CHAMELEON (No-ACE)	0.6281	0.3066	0.6429	6.3169
SR	0.5911	0.2889	0.2757	5.9743
ltem-kNN	0.5707	0.2801	0.3892	6.5898
СО	0.5699	0.2625	0.2496	5.5716
V-SkNN	0.5469	0.2495	0.1348	5.1758
RP	0.4580	0.1994	0.0220	4.490
СВ	0.3703	0.1746	0.6855*	8.1683*

G1 dataset

Recommender	HR@10	MRR@10	COV@10	ESI-R@10
CHAMELEON (LSA)	0.6686*	0.3423*	0.6452	6.3833
CHAMELEON (No-ACE)	0.6281	0.3066	0.6429	6.3169
SR	0.5911	0.2889	0.2757	5.9743
ltem-kNN	0.5707	0.2801	0.3892	6.5898
СО	0.5699	0.2625	0.2496	5.5716
V-SkNN	0.5469	0.2495	0.1348	5.1758
RP	0.4580	0.1994	0.0220	4.490
СВ	0.3703	0.1746	0.6855*	8.1683*

G1 dataset

Recommender	HR@10	MRR@10	COV@10	ESI-R@10
CHAMELEON (LSA)	0.6686*	0.3423*	0.6452	6.3833
CHAMELEON (No-ACE)	0.6281	0.3066	0.6429	6.3169
SR	0.5911	0.2889	0.2757	5.9743
ltem-kNN	0.5707	0.2801	0.3892	6.5898
СО	0.5699	0.2625	0.2496	5.5716
V-SkNN	0.5469	0.2495	0.1348	5.1758
RP	0.4580	0.1994	0.0220	4.490
СВ	0.3703	0.1746	0.6855*	8.1683*

G1 dataset

Recommender	HR@10	MRR@10	COV@10	ESI-R@10
CHAMELEON (LSA)	0.6686*	0.3423*	0.6452	6.3833
CHAMELEON (No-ACE)	0.6281	0.3066	0.6429	6.3169
SR	0.5911	0.2889	0.2757	5.9743
Item-kNN	0.5707	0.2801	0.3892	6.5898
СО	0.5699	0.2625	0.2496	5.5716
V-SkNN	0.5469	0.2495	0.1348	5.1758
RP	0.4580	0.1994	0.0220	4.490
СВ	0.3703	0.1746	0.6855*	8.1683*

G1 dataset

Recommender	HR@10	MRR@10	COV@10	ESI-R@10
CHAMELEON (LSA)	0.6686*	0.3423*	0.6452	6.3833
CHAMELEON (No-ACE)	0.6281	0.3066	0.6429	6.3169
SR	0.5911	0.2889	0.2757	5.9743
Item-kNN	0.5707	0.2801	0.3892	6.5898
СО	0.5699	0.2625	0.2496	5.5716
V-SkNN	0.5469	0.2495	0.1348	5.1758
RP	0.4580	0.1994	0.0220	4.490
СВ	0.3703	0.1746	0.6855*	8.1683*

7 The effect of different content representations

G1 dataset

Recommender	HR@10	MRR@10
No-ACE	0.6281	0.3066
Supervised		
CNN	0.6585	0.3395
GRU	0.6585	0.3388
Unsupervised		
W2V*TF-IDF	0.6575	0.3291
LSA	0.6686*	0.3423
doc2vec	0.6368	0.3119

Comparison of different content encodings for CHAMELEON

7 The effect of different content representations

G1 dataset

Recommender	HR@10	MRR@10
No-ACE	0.6281	0.3066
Supervised		
CNN	0.6585	0.3395
GRU	0.6585	0.3388
Unsupervised		
W2V*TF-IDF	0.6575	0.3291
LSA	0.6686*	0.3423
doc2vec	0.6368	0.3119

Comparison of different content encodings for CHAMELEON

The effect of different content representations

Adressa dataset

Recommender	HR@10	MRR@10
No-ACE	0.6816	0.3252
Supervised		
CNN	0.6860	0.3333
GRU	0.6856	0.3327
Unsupervised		
W2V*TF-IDF	0.6913	0.3402
LSA	0.6935	0.3403
doc2vec	0.6898	0.3402

Comparison of different content encodings for CHAMELEON

Main Findings

In this context of session-based news recommendation using hybrid neural architectures based on RNN, considering data from two large news portals, it was possible to conclude that:

RQ1 - Significant accuracy improvements are achieved when the article content is leveraged.

- **RQ2** The **technique** used to encode textual content **does affect accuracy**.
 - **Unsupervised techniques were in general better** target quality and depth is important for supervised methods.
 - Surprisingly, the recommendation accuracy obtained with the *LSA*-based encodings was quite competitive compared to the embeddings produced by neural networks (e.g., *CNN*, *GRU*) using pre-trained word embeddings.

On the Importance of News Content Representation in Hybrid Neural Session-based Recommender Systems

Gabriel Moreira^{1,2}, Dietmar Jannach³, Adilson Cunha²

¹CI&T, Brazil

² ITA - Brazilian Aeronautics Institute of Technology

