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Background

* A great amount of user opinions are stored online.
« Opinion Mining and Sentiment Analysis have significant and

valuable influence on government decision, market advertising

and recommender system.
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Background

Two sentiment analysis methods:
» Using a big training corpus to train a supervised learning algorithm.
» Making use of a sentiment lexicon in order to perform sentiment
analysis on any type of text, such as rule-based method.
A common challenge of both approaches is the lack
of sufficiently big and representative training corpora

and sentiment lexicons.
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Background

e The aim of this paper is two-fold:

> Firstly, we want to present the results of using semi-supervised
machine learning on an available training corpus.
> Secondly, we seek to determine the impact of using a general

sentiment lexicon for semi-supervised learning.
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Related Work

e Most approaches use classification algorithms to determine the
polarity of a text, such as Support Vector Machines (SVM),

Bayesian Networks, and decision trees, among others.

» [Habernal et al. 2015], [Lin et al. 2012] and [Singh and Hussain 2014].

o Lexicon-based approaches

» There are a number of lexical resources for this research field, such as
SentiWordNet, WordNet-Affect, SentiSense, Opinion Lexicon,

Subjectivity Lexicon and MPQA Opinion Corpus, etc.

> [Ortega et al. 2013], [Bhaskar et al. 2015], [Chikersal et al. 2015].
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Figure 1: Framework of the proposed sentiment analysis approach.

. Classification Phase
Positive

Negative

NTNU
Norwegian University of
Science and Technology

Department of Computer and Information Science, IME



Sentiment Classification

e Negation detection

Norwegian bokmal | Norwegian nynorsk | English
ikke ikkje ‘not’

ei ei ‘not’

nei nei ‘no’

aldri aldri ‘never’
neppe neppe ‘hardly’
ingen, inga, intet ingen, inga, inkje ‘none, any’

Table 1: Negation words in the Norwegian language.
e POS tagger for Norwegian bgkmal [1]

[1] Cristina Marco, Peng Liu, and Jon Atle Gulla. Cross-lingual sentiment analysis for under-
resourced languages using machine translation and sentence embeddings. “Under review".
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Sentiment Classification

e Input features for machine learning classifier.

Features Description Type
TF-IDF TF-IDFs for Unigrams Discrete
Sentiment score from the sentiment

Sentiment Vector : : Discrete
lexicon according to part-of-speech
1) The minimum/maximum sentiment
score of the input document.
2) The number of negative/positive
Statistical Features words of the input document. Discrete

3) The sum of negative/positive score
in the input document.

4) If the sum of negative score is
higher than the positive score.

Table 2: Sentiment features used in this paper.
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Sentiment Classification

e Machine Learning Algorithms
» Gaussian Naive Bayes (NB)
» Logistic Regression (LR)
» Support Vector Machine (SVM)

> Neural Networks (NN)
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Experiments

o Two external resources

» Training corpus -- Norwegian Review Corpus (NoReC) [2]

» Norwegian Sentiment lexicon [1] -- This lexicon contains 33,224

synsets and 35,035 wordsenses.

Full Review Simplified Review
Datasets
Corpus Corpus

#Reviews 31,671 15,713 EmE Nouns

. mm Verbs
#Pos. reviews 23,477 13,156 mm Adjectives
#Neg. reviews 8,194 2,557
Imbalance ratios 2.87 5.15

Table 3: Some statistics of the datasets.

Figure 2: The distribution of synsets per morphological

category in Norwegian sentiment lexicon.

[2] https://github.com/ltgoslo/norec. B NTNU
Norwegian University of
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Experiments

o Sentiment classification results

Datasets Full Review Corpus Simplified Review Corpus
0.7439 0.8428
0.8333 0.9257
0.8372" 0.9296"
0.8159 0.9251

Table 3: The AUC score of sentiment classification results.
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Experiments

Effect of different features

[ ]
Features NB LR SVM NN
TF-IDF 0.7346  0.8232  0.8310  0.7982
SV 0.6757  0.7365  0.7363  0.6734  Table 4: The AUC score on full review
SS 0.5906  0.6207  0.6223  0.6184  cqryys with different features.
TF-IDF + SV 0.7440° 0.8298  0.8348  0.8027
TF-IDF + SS 07356  0.8269  0.8340  0.7810
SV + SS 0.6752 07423 07428  0.6693

TF-IDF + SV +SS  0.7439 0.8333" 0.8372* 0.8159"

Features NB LR SVM NN
TF-IDF 0.8399 09176 09251  0.9143
Table 5: The AUC score on simplified review 2\87 g-zz;z 8'3122 8'31‘7*; g-;ggg
corpus with different features. : 71 71 :
P TF-IDF + SV 0.8438* 09198 09247  0.9176
TF-IDF + SS 0.8398 09229  0.9305*  0.9093
SV +SS 0.7691  0.8299 07292  0.7904
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TF-IDF + SV +SS  0.8428 0.9257" 0.9296 0.9251"
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Conclusions

e To our knowledge, this is the first paper that
explores semi-supervised sentiment analysis using a
sentiment lexicon for Norwegian.

e The use of features obtained from the general
sentiment lexicon improves the results

significantly.
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Thank you!
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