TFE4120 Electromagnetics - Crash course

Exercise 1

In this exercise we will recapitulate some mathematical tools from vector-analysis, which is often found in electromagnetics. Notation: Vectors will be written in bold, e.g F , and unity vectors with circumflex (hat), e.g $\hat{\mathbf{x}}$.

Problem 1

In physics and mathematics there are several types of line integrals. Some of these are

1) $\int_{C} F \mathrm{~d} l$,
2) $\int_{C} F \mathrm{~d} \mathbf{l}$,
3) $\int_{C} \mathbf{F} \mathrm{~d} l$,
4) $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l}$
a) Which of the integrals fit to the following physical situations:
i) When the mass density of a wire is F, and you want to find the total mass of the wire
ii) Given a force \mathbf{F} which acts on a body moving along a curve C, and you want to find the total work done by the force.
b) Let \mathbf{F} and F be constants, unequal to 0 , and use the integration curves C_{1} and C_{2} from the figure below. In which of the cases 1)-4), above, is the integral along these curves equal to 0 ? Sketch dl for different positions on each curve.

For surface integrals the corresponding integrals are

1) $\int_{S} F \mathrm{~d} S$,
2) $\int_{S} F \mathrm{~d} \mathbf{S}$,
3) $\int_{S} \mathbf{F} \mathrm{~d} S$,
4) $\int_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$
c) Repeat task b) for the surface integrals. Use the surfaces below.

d) How is the direction of $\mathrm{d} \mathbf{S}$ for the torus defined? Sketch $\mathrm{d} \mathbf{S}$ at three different points.
e) Consider the surface S_{1} defined by the curve C_{1}. In what direction does $\mathrm{d} \mathbf{S}$ for S_{1} point?

Problem 2

a) Define and explain the following terms using your own words.
i) Flux
ii) Divergence
iii) Curl
iv) Conservative field.
b) Write down and briefly explain the following theorems using your own words.
i) Divergence theorem
ii) Stoke's theorem

Optional tasks: The following tasks are optional, but offers good practice. It is recommended to do them.

Problem 3

Calculate the integral

$$
\begin{equation*}
I=\int_{V}(\nabla \cdot \mathbf{F}) \mathrm{d} V \tag{1}
\end{equation*}
$$

where $\mathbf{F}=r \hat{\mathbf{r}}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$, and the volume V is a sphere with radius R placed in the origin.
a) Calculate the integral directly.
b) Calculate the integral using the divergence theorem.

Problem 4

a) Calculate the line integral

$$
\begin{equation*}
I=\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l} \tag{2}
\end{equation*}
$$

Where $\mathbf{F}=\left(x y^{2}+2 y\right) \hat{\mathbf{x}}+\left(x^{2} y+2 x\right) \hat{\mathbf{y}}$,
i) Along the curve C_{1} which consists of two straight lines connecting the points $(0,0)$, $(a, 0)$ and (a, b), see figure below.
ii) Along the curve C_{2} which consists of one straight line connecting the points $(0,0)$ and (a, b), see figure below.
iii) Why do these calculations produce the same answer? Explain using Stoke's theorem.

b) For the following scenarios, sketch the curve C and calculate the integral of the function along that curve (i.e calculate the integral $\int_{C} f \mathrm{~d} l$ for i) and ii), and $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l}$ for iii))
i) $f=x+y, C$ is given by: $x=1+e^{2 t}, y=e^{2 t}, t \in[0, \ln 2]$.
ii) $f=\frac{2 y}{x} \sqrt{1+x^{2}}, C$ is given by: $y=\frac{1}{2} x^{2}, x \in[0,2]$.
iii) $\mathbf{F}=\hat{\mathbf{x}} \cos ^{2} t+\hat{\mathbf{y}} 2 \sin t$, along the $\operatorname{line} \mathbf{l}(t)=\hat{\mathbf{x}} \tan t-\hat{\mathbf{y}} \cos t, t \in[-\pi / 3, \pi / 3]$.

