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Problem 1

a) The current is given by I =
∫
S J · dS = JS, if J is evenly distributed across S. Thus, the

current density is given by

J =
I

πa2
. (1)

b) We integrate J across the cross section:

I =

∫
S
J · dS = 2J0

∫ a

0

r2

a2
2πrdr = J0πa

2. (2)

Problem 2

The B-field in the center of the loop can be considered as the sum of two contributions
(superposition). It is easiest to use two different cylindric coordinate systems for the two
contributions. One with the z-axis along the straight conductor, and the other with it’s z-axis
pointing out of the plane with it’s origin in the center of the loop (we use small subscripts s
and l in order to differentiate the two)
Bs, represents the contribution from the circular loop with current I, while Bl represents

the contribution from the infinitely long, straight, thin conductor carrying the current I. We
have then

B = Bs + Bl. (3)

For Bs we can use Biot-Savart’s law

Bs =
µ0
4π

∮
C

Idl× r̂s
r2s

, (4)

where C is the circular loop in the task. When our observation point is in the center of the
loop we can say that dl× r̂s = dlẑs and rs = a for the whole loop so that we get

Bs =
µ0I

4πa2

∮
C

dlẑs =
µ0I

4πa2
2πaẑs =

µ0I

2a
ẑs. (5)
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For an infinitely long, straight, thin conductor we can use Ampere’s law∮
C
Bl · dl = 2πrlBl = µ0

∮
J · dS = µ0I, (6)

and thus

Bl =
µ0I

2πrl
φ̂l. (7)

For rl = a we find

Bl(a) =
µ0I

2πa
φ̂l. (8)

In the center of the loop we have φ̂l = ẑs. Thus, the flux density there is

B =
µ0I

2a

(
1 +

1

π

)
ẑ. (9)

Problem 3

a) Due to cylindric symmetry we use the cylindric coordinates r and φ. We can also say
that the field only has a φ-component as a function of r, so that

B = B(r)φ̂. (10)

is valid everywhere. In this task we use Ampére’s law∮
C
B · dl = µ0

∫
S
J · dS, (11)

where
∫
S J · dS is the total current flowing through an area encircled by the integration

loop. In this case we choose to have an integration loop C to be a circle with it’s center
in the middle of the coaxial cable, and with a radius r.

For r < a: ∮
C
B · dl = 2πrB(r) = µ0

πr2

πa2
I, (12)

which yields

B =
µ0rI

2πa2
φ̂ for r < a. (13)

For a < r < b we find ∮
C
B · dl = 2πrB(r) = µ0I, (14)

which yields

B =
µ0I

2πr
φ̂ for a < r < b. (15)

For b < r < b+ t we find∮
C
B · dl = 2πrB(r) = µ0

(
I − πr2 − πb2

π(b+ t)2 − πb2
I

)
= µ0I

(b+ t)2 − r2

2bt+ t2
, (16)

2



which yields

B =
µ0I

2πr

(b+ t)2 − r2

2bt+ t2
φ̂ for b < r < b+ t. (17)

For r > b+ t we find ∮
C
B · dl = 2πrB(r) = µ0(I − I) = 0. (18)

To sum up:

B =


µ0rI
2πa2

φ̂ for r < a,
µ0I
2πr φ̂ for a < r < b,
µ0I
2πr

(b+t)2−r2
2bt+t2

φ̂ for b < r < b+ t,

0 for r > b+ t.

. (19)
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b) Since the current is assumed to be evenly distributed across the conductors, the current
in the outer conductor will not contribute to the field inside of the outer conductor. This
is easily verified by imagining the field contribution on the inside of the outer conductor
when there is no inner conductor. Due to symmetry any field contribution will have the
form B = B(r)φ̂. Since there is no current flowing through a hollow inner conductor
Ampere’s law gives us

∮
C B · dl = 0 for a closed loop inside the cylinder. By choosing a

circular loop around the cylindric axis we get B = 0 inside the hollow outer conductor.

The field inside of the outer conductor should therefore be concentric circles around the
inner conductor’s axis. Sketch I, V and VI can therefor be eliminated.

Sketch III is not valid since the field lines outside of the outer conductor does not
contain any contribution from the current in the outer conductor. (The sketch only
shows the field contribution from the inner conductor)

Sketch IV is not valid since the field has a divergence by the outer conductor (all
magnetic field lines should ”bite their own tail”).

Sketch I, IV and VI are not valid since the field outside of the outer conductor should be
different from zero (The field from the two conductor can not counteract each other
completely).

Thus, sketch II is correct
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Problem 4

C

B
ẑ

We use Ampére’s law ∮
C
B · dl = µ0

∫
S
J · dS, (20)

where the integration loop C is as shown in the figure above. We assume that the current is I.
By using Ampére’s law and the equation ∇ ·B = 0 it can be claimed that the magnetic flux
density B only have a ẑ-component. Since the B-field is zero outside the solenoid, we get from
Ampére’s law that B = Bẑ inside the solenoid, where

Bl = µ0NI, (21)

which yields

B =
µ0NI

l
ẑ. (22)
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