TFE4120 Electromagnetics - Crash course

Lecture 4: Magnetic fields, Biot-Savart's law, Ampere's law

Thursday August 11th, 9-12 am.

Exercise 4: Problem 1. $10 \mathrm{~min}+5 \mathrm{~min}$ solution.

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=\frac{\rho_{\mathrm{tot}}}{\epsilon_{0}} \tag{2}
\end{equation*}
$$

are the two laws concerning \mathbf{E} in electrostatics. The corresponding laws for the magnetic field B are:

$$
\begin{equation*}
\frac{1}{\mu_{0}} \nabla \times \mathbf{B}=\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}+\mathbf{J}_{\mathrm{tot}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{4}
\end{equation*}
$$

In "magnetostatics", i.e. if all currents are constant in time (so that the electromagnetic fields are time-independent) we have

$$
\begin{equation*}
\frac{1}{\mu_{0}} \nabla \times \mathbf{B}=\mathbf{J}_{\mathrm{tot}} \tag{5}
\end{equation*}
$$

Biot-Savart's law (the magnetic equivalent to Coulomb's law)

If we have to moving charges, Q_{1} moving with velocity \mathbf{v}_{1}, and Q_{2} moving with \mathbf{v}_{2}, the magnetic force on Q_{2} from Q_{1} is

$$
\begin{equation*}
\mathbf{F}=Q_{2} \mathbf{v}_{2} \times\left(\frac{\mu_{0}}{4 \pi} \frac{Q_{1} \mathbf{v}_{1} \times \hat{\mathbf{r}}}{r^{2}}\right) \tag{6}
\end{equation*}
$$

where $\mu_{0}=4 \pi \cdot 10^{7} \mathrm{Ns}^{2} \mathrm{C}^{2}$. This value is exact, because this equation is used as a standard for 1 C (the unit for charge). If \mathbf{v}_{1} is parallel to \mathbf{v}_{2}, and \mathbf{v}_{1} is normal to $\hat{\mathbf{r}}$ (the unit vector from Q_{1} to Q_{2}) we get

$$
\begin{equation*}
\mathbf{F}=-\frac{\mu_{0}}{4 \pi} Q_{2} v_{2} \frac{Q_{1} v_{1}}{r^{2}} \hat{\mathbf{r}} \tag{7}
\end{equation*}
$$

The magnetic force between two positive charges moving parallel to eachother is thus attractive.

We define the magnetic field B (the magnetic flux density) produced by a charge Q_{1} moving at \mathbf{v}_{1} :

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{Q_{1} \mathbf{v}_{1} \times \hat{\mathbf{r}}}{r^{2}} \tag{8}
\end{equation*}
$$

This is called "Biot-Savart's law". The magnetic field \mathbf{B} describes the force on a charge Q moving with a velocity \mathbf{v} :

$$
\begin{equation*}
\mathbf{F}=Q \mathbf{v} \times \mathbf{B} . \tag{9}
\end{equation*}
$$

Example: Charge moving in a constant B-field: The charge will follow a circular path.

B-fields from different current distributions

a) Current along a line:

$$
\begin{equation*}
\mathrm{d} \mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{Q^{\prime} \mathrm{d} l \mathbf{v} \times \hat{\mathbf{r}}}{r^{2}}, \tag{10}
\end{equation*}
$$

is the contribution to the total \mathbf{B}-field from a line segment $\mathrm{d} \mathbf{l}$ along the thin conductor. We have

$$
\begin{equation*}
Q^{\prime} \mathrm{d} l \mathbf{v}=\mathrm{d} q \frac{\mathrm{~d} \mathbf{l}}{\mathrm{~d} t}=\frac{\mathrm{d} q}{\mathrm{~d} t} \mathrm{~d} \mathbf{l}=I \mathrm{~d} \mathbf{l} . \tag{11}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\mathbf{B}=\int_{C} \mathrm{~d} \mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{C} \frac{I \mathrm{~d} \mathbf{l} \times \hat{\mathbf{r}}}{r^{2}} . \tag{12}
\end{equation*}
$$

This is the magnetic field B from a line current ("Biot-Savart's law for a line current").
b) Current along a surface: If the current instead is running along a thin surface we have

$$
\begin{equation*}
\mathbf{J}_{S}=\frac{n q}{\Delta S} \mathbf{v}=N_{S} q \mathbf{v}=\rho_{s} \mathbf{v} \tag{13}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\mathbf{B}=\int_{S} \mathrm{~d} \mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{S} \frac{\mathbf{J}_{S} \mathrm{~d} S \times \hat{\mathbf{r}}}{r^{2}} . \tag{14}
\end{equation*}
$$

This is the magnetic field \mathbf{B} from a surface current ("Biot-Savart's law for a surface current").
c) Current through a volume:

$$
\begin{equation*}
\mathbf{J}=N q \mathbf{v}, \tag{15}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\mathbf{B}=\int_{V} \mathrm{~d} \mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\mathbf{J} \times \hat{\mathbf{r}}}{r^{3}} \mathrm{~d} V . \tag{16}
\end{equation*}
$$

This is the magnetic field \mathbf{B} from a volume current ("Biot-Savart's law for a volume current").

Example: Magnetic field outside a cable with current I in the $\hat{\mathbf{y}}$-direction. We find \mathbf{B} at a given point $(x, y)=(a, b)$:

$$
\begin{align*}
\mathbf{B} & =\frac{\mu_{0}}{4 \pi} \int_{-l / 2}^{l / 2} \frac{I \mathrm{~d} \mathbf{y} \times \hat{\mathbf{r}}}{r^{2}}, \\
& =\frac{\mu_{0}}{4 \pi} \int_{-l / 2}^{l / 2} \frac{\sin \theta I \mathrm{~d} y \hat{\boldsymbol{\phi}}}{r^{2}}, \\
& =\frac{\mu_{0}}{4 \pi} \int_{-l / 2}^{l / 2} \frac{a I \mathrm{~d} y}{r^{3}} \hat{\boldsymbol{\phi}} \\
& =\frac{\mu_{0} a I}{4 \pi} \int_{-l / 2}^{l / 2} \frac{1}{\left(a^{2}+(b-y)^{2}\right)^{3 / 2}} \mathrm{~d} y \hat{\boldsymbol{\phi}}, \\
& =\frac{\mu_{0} a I}{4 \pi}\left[\frac{\frac{l}{2}-b}{a^{2} \sqrt{a^{2}+\left(b-\frac{l}{2}\right)^{2}}}+\frac{\frac{l}{2}+b}{a^{2} \sqrt{a^{2}+\left(b+\frac{l}{2}\right)^{2}}}\right] \hat{\boldsymbol{\phi}} . \tag{17}
\end{align*}
$$

If we assume that the cable is long, i.e. $l \gg a, b^{1}$ we get

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I}{2 \pi a} \hat{\boldsymbol{\phi}} \tag{18}
\end{equation*}
$$

Exercise 4: Problem 2. $15 \mathrm{~min}+5 \mathrm{~min}$ solution.
Note: Using Biot-Savart's law often involves complicated calculations. If the problem has some degree of symmetry we rather use "Ampere's law".

More about the B-field:

The magnetic force does no work!

$$
\begin{equation*}
\mathrm{d} W=\mathbf{F}_{\text {mag }} \cdot \mathrm{d} \mathbf{l}=(q \mathbf{v} \times \mathbf{B}) \cdot \frac{\mathrm{d} \mathbf{l}}{\mathrm{~d} t} \mathrm{~d} t=(q \mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} \mathrm{d} t=0 \tag{19}
\end{equation*}
$$

Magnetic forces may change the direction, but not the velocity of a moving charge. There are no magnetic monopoles. It may be shown from Biot-Savart's law that

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{20}
\end{equation*}
$$

everywhere! This is one of Maxwell's equations. It means that magnetic fields cannot flow out from a point. That is, there are not "magnetic charges". All magetic fields must "bite their own tale". In integral form:

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{B} \mathrm{~d} V=\oint_{S} \mathbf{B} \cdot \mathrm{~d} \mathbf{S}=0 \tag{21}
\end{equation*}
$$

i.e. the total magnetic flux through any closed surface S is always zero!

[^0]
Amperes law for constant currents

Applyling Stoke's theorem to (5) gives:

$$
\begin{equation*}
\int_{S} \nabla \times \mathbf{B} \cdot \mathrm{d} \mathbf{S}=\int_{C} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=\mu_{0} \int_{S} \mathbf{J} \cdot \mathrm{~d} \mathbf{S} \tag{22}
\end{equation*}
$$

This law tells us that the circulation of magnetic field around a closed path is proportional to the total current through the path.

Example: Magnetic field outside a cable (again).

$$
\begin{equation*}
\oint_{C} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=\mu_{0} \int \mathbf{J} \cdot \mathrm{~d} \mathbf{S} . \tag{23}
\end{equation*}
$$

Let C be a circular curve centered at the cable. We then have

$$
\begin{equation*}
\mu_{0} \int_{S} \mathbf{J} \cdot \mathrm{~d} \mathbf{S}=\mu_{0} \int_{S} J \mathrm{~d} S=\mu_{0} I, \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\oint_{C} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=\oint_{C} B \hat{\boldsymbol{\phi}} \cdot \mathrm{~d} l \hat{\boldsymbol{\phi}}=\oint_{C} B \mathrm{~d} l=B \oint_{C} \mathrm{~d} l=B(r) 2 \pi r . \tag{25}
\end{equation*}
$$

We here used that \mathbf{B} is directed along the $\hat{\boldsymbol{\phi}}$-direction, i.e. along the circular path around the cable. Further, we used that \mathbf{B} is independent on ϕ and z, and thus only depends on r. Since r is constant along C we could thus move B outside the integral. Equations (5), (24) and (25) gives

$$
\begin{equation*}
\mathbf{B}(r)=\frac{\mu_{0} I}{2 \pi r} \hat{\phi}, \tag{26}
\end{equation*}
$$

which is the same as we got last time.
We now argue why $\mathbf{B}(r, \phi, z)=B(r) \hat{\boldsymbol{\phi}}$. We assume that the cable is infinitely long. We thus don't have to bother about the returing current, or what happens at the end points.
First, \mathbf{B} must be independent on z, since the cable is infinitely long. Considering \mathbf{B} at different values for z does not alter the physical situation, and thus our solution $\mathbf{B}(r, \phi, z)$ should be independent on z. Similarly, (B) must be independent on ϕ, since if we rotate the cable by an angle ϕ wrt. the $\hat{\mathbf{z}}$-axis, the physical situation is unaltered, so $\mathbf{B}(r, \phi)$ must be independent on ϕ.
If \mathbf{B} has a $\hat{\mathbf{r}}$-component, this will thus be equal for all ϕ and z. This means we have a net flow of magnetic field out from a closed cylinder surface around the cable, which contradics (4).
Finally, B cannot have a $\hat{\mathbf{z}}$-component. This is seen from Biot-Savart's law:

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{C} \frac{I \mathrm{~d} \mathbf{l} \times \hat{\mathbf{r}}}{r^{2}} . \tag{27}
\end{equation*}
$$

Since the current is along the $\hat{\mathbf{z}}$-axis, we have $I \mathrm{~d} \mathbf{l}=I \mathrm{~d} l \hat{\mathbf{z}}$, which gives no $\hat{\mathbf{z}}$-component in \mathbf{B}.
Example 2: Cable with final thickness. Assume the current I runs through a cable with radius a, and that the current is evenly distributed across the cross section: $\mathbf{J}=\frac{I}{\pi a^{2}} \hat{\mathbf{z}}$.
Ampere's law gives

$$
\begin{equation*}
\oint_{C} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=\mu_{0} \int_{S} \mathbf{J} \cdot \mathrm{~d} \mathbf{S} . \tag{28}
\end{equation*}
$$

As in the previous example, one may argue that $\mathbf{B}=B(r) \hat{\boldsymbol{\phi}}$. This gives

$$
\begin{equation*}
\oint_{C} \mathbf{B} \cdot \mathrm{~d} \mathbf{l}=2 \pi r B(r) . \tag{29}
\end{equation*}
$$

The value of the right hand side depends on r. For $r>a$ we have $\int_{S} \mathbf{J} \cdot \mathrm{~d} \mathbf{S}=I$, while for $r<a$ we have $\int_{S} \mathbf{J} \cdot \mathrm{~d} \mathbf{S}=\frac{I \pi r^{2}}{\pi a^{2}}$. This gives for $r<a$:

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I r}{2 \pi a^{2}} \hat{\boldsymbol{\phi}} \tag{30}
\end{equation*}
$$

and for $r>a$:

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I}{2 \pi a} \hat{\boldsymbol{\phi}} \tag{31}
\end{equation*}
$$

Exercise 4: Problem 3 and 4. $45 \mathrm{~min}+15 \mathrm{~min}$ solution.

[^0]: ${ }^{1}$ in fact we MUST do this, since we have ignored the return-current!

