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So far we have described E and V in vacuum. This description os also valid in any medium,

as long as we take all charges into account. For example NaCl in water may be considered as
point charges (Na+ and Cl− ions) and dipoles (H2O) randomly ordered. This, however, is
inpractical. It is simpler to consider the medium as a ”background” where we no longer have
to consider all the charges separately, only the charges additional to the background medium.

To get there, we devide charges into two categories:

a) ”Bound charges”: charges in the medium bound together as dipoles.

b) ”Free charges”: all other charges.

Our goal is to modify Gauss’ law to only have free charges on the right hand side. In the
version of Gauss’ law we have considered up until now, all charges are included on the right
hand side: ∮

S
E · dS =

Qin S

ε0
=
Qfree in S +Qbound in S

ε0
. (1)

The modified version we will end up with looks like:∮
S
D · dS = Qfree in S, (2)

where D = ε0E + P. The bound charge has thus been included in the polarization vector P.

Dipole moment is defined as
p = Qd, (3)

where the dipole consists of two charges +Q and −Q seperated by a position vector d.

Derivation of Gauss’ law in media

In a medium there will be may dipoles, in general with different p. We want to find
Qbound in S inside S. We first define

P =

∑
i pi

dV
, (4)
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where P is called the polarization density, and pi are all the dipoles inside a volume element
dV . The net dipole moment inside dV is then

Pnet =
∑
i

pi = PdV. (5)

From (3) the net positive charge inside dV may be expressed through the net polarization
inside the volume element:

Qnet =
|P|dV
d

. (6)

To find Qbound in S we must count the dipole-ends belonging to dipoles along the surface. Since
the net charge of a dipole is 0, only the dipoles with one end inside and the other outside the
surface will contribute to Qbound in S.

Consider a surface element at the boundary:

dV = d cos θdS, (7)

where dS is the surface element. We have

|Pnet| = |P|dV = (|P| cos θdS)d = (P · dS)d. (8)

From (6) we then get

Qtot =
|P|dV
d

= P · dS. (9)

The total bound charge is then found by integrating along the entire boundary surface:

Qbound in S = −
∮
S
P · dS. (10)

The sign is negative, because if the dipole points out of the surface, the negative half of the
dipole is left inside S. Inserting (10) into (1) gives∮

S
E · dS =

Qfree in S +Qbound in S

ε0
=
Qfree in S

ε0
+

1

ε0

∮
S
P · dS. (11)

Rearranging gives ∮
S
D · dS =

∮
S

(ε0E + P) · dS = Qfree in S. (12)

where we defined D as in (2). Equation (12) is sometimes referred to as Gauss’ law in media.

Relationship between D and E

Many media are ”linear”, meaning
P = ε0χE. (13)

Inserting this in (2) gives
D = ε0(1 + χ)E = ε0εrE = εE, (14)

where we introduced the relative permittivity εr and the total permittivity ε. This parameter
describes the dielectric properties of a medium, meaning how well the dipoles in the medium
align with an applied external electric field. For water εr = 81 while for air εr ≈ 1, meaning
the dielectric properties of air are very similar to vacuum.
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Example: Charge Q in water, find E!∮
S
D · dS = Q, (15)

∮
S
D(r)dS = Q, (16)

D(r)

∮
S

dS = Q, (17)

D(r)4πr2 = Q. (18)

From (14) we get

E =
D

ε
=

Q

4πεr2
r̂ =

Q

4πε0εrr2
r̂. (19)

We see that E is 1/εr = 1/81 smaller than it would be in vacuum. This effect is called
”screening”, the electric field from the charge is screened by the medium.

Gauss’ law in differential form

From (1) we previously found Gauss’ law in differential form

∇ ·E =
ρtot
ε0

, (20)

where ρtot is the total charge density (including bound charges). We may similarly find the
differential form of (12):

∇ ·D = ρ, (21)

where ρ is the free charge density.

Electrostatic energy

In the following exercies you may need these two expressions (will not be derived in this
course). The stored energy in a capacitor is

W =
1

2
CV 2, (22)

and the energy density in an electric field is

w =
1

2
D ·E =

1

2
εE2. (23)

Exercise 3: Problem 1. 25 min + 10 min solution.

Boundary conditions for E and D

Are electric fields continuous across boundaries?

E1t = E2t, (24)

D1n −D2n = ρs. (25)
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Proof: We now prove these two formulas.∮
C
E · dl =

∫
S
∇×E · dS = 0. (26)

Integrate along a small square with sides ∆l and ∆h along the boundary surface, and let
∆h→ 0. This gives ∮

C
E · dl = E1 ·∆l−E2 ·∆l = E1t∆l − E2t∆l = 0. (27)

This gives (24). Similarly we integrate Gauss’ law over a cylinder surface at the boundary, and
let the height of the cylinder ∆h→ 0:∮

S
D · dS = Q = ρs∆S. (28)

All free charge must be located at the boundary surface as ∆h→ 0. Thus∮
S
D · dS = D1 · n̂∆S −D2 · n̂∆S = D1n∆S −D2n∆S = ρs∆S. (29)

This gives (25)

Ideal conductors (charge can move freely around)

Properties of ideal conductors:

a) E = 0 inside an ideal conductor (otherwise charges would move until E = 0).

b) ρ = 0 inside an ideal conductor. ρ = ∇ ·D = ∇ · (ε0E + P) = 0, from a) + there are no
bound charges. So all charges are found at the boundary.

c) Et = 0 outside the boundary, from a) + (24).

d) The conductor is an equipotential surface/volume. VAB =
∫ B
A E · dl = 0.

e) The electric field outside the boundary of an ideal conductor is E = ρs
ε0
n̂, as shown below:∮

S
E · dS =

ρs∆S

ε0
, (30)

and use a cylinder as the Gauss’ surface. Let ∆h→ 0 which gives∮
S
E · dS =

∮
S1

E · dS +

∮
S2

E · dS =

∮
S1

E · dS = E∆S =
ρs∆S

ε0
. (31)

This gives

E =
ρs
ε0
n̂. (32)

Application: Faraday cage

A faraday cage is an ideal conductor with a cavity inside. V is constant in the ideal
conductor, which means V is constant at the outer boundary of the cavity. Since there are no
charges inside the cavity, Poisson’s equation gives that V is constant throughout the cavity.
This means E = 0 inside the caivity, independent on what E is outside the conductor.

A Faraday cage thus works as a shield from E-fields!
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Exercise 3: Problem 2. 10 min + 5 min solution.

Current density

An E-field acts with a force at a free charge q, which starts moving with a drift velocity v
(average, after thermal movements).

Consider a sufrace with area A. After a time dt all charges which have passed A is inside
the volume vdtA. If N is the number of charges per volume we have

dQ = NqvdtA, (33)

which gives
dQ

dt
= NqvA. (34)

From this we define the current

I =
dQ

dt
(35)

Current is measured in [A]. The current is the total charge passing through a cross section A
per unit time.

The current density is defined as:
J = Nqv, (36)

which is measured in [A/m2]. We thus have

I = J ·A. (37)

For a constant current normal to a surface A we then have

J =
I

A
. (38)

In general J may vary with position. Then

I =

∫
J · dS. (39)

For some media Ohms law is valid:
J = σE (40)

where σ is the conductivity of the medium. From this one may define the resistance of a wire:

R =
V

I
=

l

σS
, (41)

where l is the length and S is the cross section of the wire.

Charge conservation

Kirchoff’s law says that

I1 + I2 + I3 = −dQ

dt
= 0, (42)

in electrostatics. This is also valid for constant currents, since charges cannot pile up over
infinite times.
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If charges can pile up (over finite time periods), dQ
dt 6= 0.

More general: ∮
S
J · dS = − d

dt

∫
V
ρdV. (43)

The divergence theorem gives ∫
V
∇ · JdV = − d

dt

∫
V
ρdV. (44)

Since this must be valid for any V , we must have

∇ · J = −dρ

dt
. (45)

This equations says that charge is conserved microscopically. For constant charge distributions
we have dρ

dt = 0, so
∇ · J = 0. (46)
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