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Monday August 8th 10-12 am.
Welcome to NTNU and to this crash course in Electromagnetism. It will be assumed that

you have a BSc-degree in electronics/electrical engineering/power engineering or similar from
a university/collage. The course will be taught in English. The aim of this course is to give
you a minimum of prerequisities to follow a 2-year master program in electronics or electrical
power engineering here at NTNU.

• Webpage: https://www.ntnu.no/wiki/x/bBh2BQ. All information is posted there.

• Teacher: Hans Olaf Haagenvik, PhD-student. hans.hagenvik@iet.ntnu.no. Office: B417
Electro-building.

• Syllabus: Lecture notes, posted on webpage before each lecture. Will try to keep them
updated. You will also find suggestions to supplementary litterature, but don’t go and
buy expensive books unless you’re going to use them in later courses.

• The exercises will be included in the lectures, where you will be given breaks (≈ 15 min)
after each new topic has been covered to solve some the relevant problems from the
exercise.

Maxwell’s equations:

∇ ·E =
ρ

ε0
, (1)

∇ ·B = 0, (2)

∇×E = −∂B
∂t
, (3)

1

µ0
∇×B = ε0

∂E

∂t
+ J. (4)

These equations describe every electromagnetic, including optical, devices and phenomena.
From these one may derive the wave equation for E and B, and also the antenna equations,
which will be the final results in this course. These equations should be familiar, but maybe
not in this notation?
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Coulombs law (∇ · E = ρ/ε0)

The electric force F from a charge Q acting on a charge q is given by

F =
qQ

4πε0R2
R̂, (5)

where R is the distance between the charges, and R̂ is the unit vector along the line from Q to
q.

The total electric force acting on q from several charges Qi is given by vector addition of the
forces from each charge seperately. If there are N charges Qi:

Ftot =
N∑
i=1

qQi
4πε0R2

i

R̂i, (6)

where each Ri is the distance between q and Qi, and R̂i is the unit vector along the line from
Qi to q.

Notation:

• Scalar: R = |R|.

• Vector: R.

• Unit vector: R̂ = R/|R|, so |R̂| = 1.

Electric fields

Define electric field: E = limq→0
F
q . The electric field describes the direction and magnitude of

the force a test charge will ”feel”. The field from a point charge is given by:

E = lim
q→0

qQ
4πε0R2 R̂

q
=

Q

4πR2
R̂. (7)

If the electric field E is known, the force acting on a test charge q is given by F = qE.

Vector calculus: line-, surface- and volume integrals

Electromagnetism takes place in space (and time), so
E = Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ. Scalar functions: V = V (x, y, z).

Line integrals: e.g. work required to move a charge through an electric field:
W =

∫ B
A qE · dl.

Surface integrals: e.g. flux of E-field through the surface of a sphere:
∮
S E · dS.

Volume integrals: e.g. charge inside a bounded volume: Q =
∫
V ρ(x, y, z)dV , where ρ is

the charge density.
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Exercise 1: Problem 1. 15 min + 5 min solution.
Hint: always look for simplifications:

• If E||dS, we have
∮
E · dS =

∮
EdS (got rid of vectors).

• If E(R) is constant over a sphere,
∮
E · dS =

∮
EdS = E

∮
dS = E · 4πR2.

Application: Find E-field from different charge distributions

a) Charge distributed over volume

E =
N∑
i=1

Qi
4πε0R2

i

R̂i. (8)

Define Qi = ρi∆Vi, where ρi is the charge density. Then

E =
N∑
i=1

ρi
4πε0R2

i

R̂i∆Vi →
∫
V

ρ

4πε0R2
R̂dV. (9)

b) Charge distributed over a surface (plane)

E =

∫
V

ρS
4πε0R2

R̂dS, (10)

where in this case Qi = ρS,i∆Si, and ρS is charge per unit surface area.

c) Charge distributed along a line

E =

∫
V

Q′

4πε0R2
R̂dl, (11)

where in this case Qi = Q′i∆l, and Q′ is charge per unit length.

Example: Electric field along the z-axis from charged ring

At the ring: Q′ = Q
2πa . Line charge: E =

∫
C

Q′

4πε0R2 R̂dl =
∫
C

Q′

4πε0R3Rdl = Q′

4πε0R3

∫
C Rdl.

Here R is the distance from the ring to our observation point along the z-axis. From
Pytagoras we have R2 = a2 + z2. Note that R is constant along C, so it may be taken outside
the ingeral along with the other constants.

The integral
∫
Rdl is a sum of all the R-vectors from all the points along the ring to the

observation point. This may be simplified by noting that all the x- and y-components will
cancel out. This gives ∫

Rdl =

∫
zdl = 2πz, (12)
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which finally gives

E =
Q′

4πε0R3
· 2πazẑ

=
Q

2πa

4πε0R3
· 2πazẑ

=
Qz

4πε0(a2 + z2)3/2
ẑ, (13)

where we used that R2 = a2 + z2.
This is an ugly expression. One test to see of it is correct is to examine the limit a→ 0.

This should give the field from a point charge (a very tiny ring looks like a point).
Consider

lim
a→0

E =
Qz

4πε0z3
ẑ =

Q

4πε0z2
ẑ, (14)

where R ≈ z as a→ 0. This expression is thus the same as the Couloumb-field. OK!
We may also verify that E(z = 0) = 0, as it should be since the charge is spread evenly out

along the ring, so the contribution from charges opposite one another exactly cancel out. OK!

Properties of the fields: Divergence and curl

Gradient: ∇ =< ∂
∂x ,

∂
∂y ,

∂
∂z >. ”3-dimensional derivative of a scalar function”.

The gradient points in the direction of the greatest rate of increase of the function, and its
magnitude is the slope of the graph in that direction.

Divergence:

How much does the field flow out of a point?

divE = ∇ ·E = lim∆V→0

∮
S E·dS
∆V .

Curl:

How much does the field circulate around a point?

curlE = ∇×E = lim∆S→0

∮
C E·dl
∆S .

Useful theorems

Divergence theorem: ∮
S
E · dS =

∫
V
∇ ·EdV. (15)

”Proof”: Two ways to find the flux out of a sphere.

a) Flux out of one surface.

b) Flux out of many small surfaces.

∮
S
E · dS =

∑
i

∮
Si

E · dS =
∑
i

(
1

∆Vi

∮
Si

E · dSi)∆Vi →
∫
∇ ·EdV. (16)
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Stokes theorem: ∮
C
E · dl =

∫
V
∇×E · dS. (17)

”Proof”: Two ways to calculate the integral of E pointing along a closed loop.

a) Integrate along the edge of the surface.

b) ... or along the edges of many small surfaces (no gaps between them).

Since the integral along any ”inner edges” cancel out, these two calculations must be equal.∮
C
E · dl =

∑
i

∮
Ci

E · dl =
∑
i

(

∮
Si
E · dSi
∆Si

)∆Si →
∫
∇×E · dS. (18)

This ”proof” was for a flat surface, but the theorem is valid in general.

Exercise 1: Problem 2-4. 15 min + 5 min solution.
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