
MATLAB Introduction Course:
Lecture 4

Øivind K. Kjerstad

10. October 2014

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 1 / 28



TOC

1 Probability and Statistics

2 Data Structures

3 Images and Animation

4 Debugging

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 2 / 28



Statistics

Whenever analyzing data, you have to compute statistics
I scores = 100*rand(1,100);

Built-in functions
I mean, median, mode

To group data into a histogram
I >> hist(scores,5:10:95);
I makes a histogram with bins centered at 5, 15, 25 ... 95
I >> N=histc(scores,0:10:100);
I returns the number of occurrences between the specified bin edges 0 to

<10, 10 to <20..90 to <100, you can plot these manually:
I >> bar(0:10:100,N,’r’)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 3 / 28



Random Numbers

Many probabilistic processes rely on random numbers

MATLAB contains the common distributions built in
I rand

F draws from the uniform distribution from 0 to 1

I randn
F draws from the standard normal distribution (Gaussian)

I random
F can give random numbers from many more distributions
F see doc random for help
F the docs also list other specific functions

You can also seed the random number generators
I >> rand(’state’,0);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 4 / 28



Changing Mean and Variance

We can alter the given distributions
I >> y=rand(1,100)*10+5;

F gives 100 uniformly distributed numbers between 5 and 15

I >> y=floor(rand(1,100)*10+6);
F gives 100 uniformly distributed integers between 10 and 15. floor or

ceil is better to use here than round

I >> y=randn(1,1000)
I >> y2=y*5+8

F increases std to 5 and makes the mean 8-

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 5 / 28



Exercise 1

Exercise: Random walk

Draw a random number in
[0 1], if larger than 0.5 move
1 meter right, otherwise
move 1 meter left

Keep track of each new
position in a vector

Take 10.000 steps

Plot the histogram of the
positions

Proposed recipe

1 vector of size 1x10k

1 loop

random numbers

hist

You may alter the recipe as
you like

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 6 / 28



Solution

Notice that the histogram will be different each time

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 7 / 28



TOC

1 Probability and Statistics

2 Data Structures

3 Images and Animation

4 Debugging

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 8 / 28



Advanced Data Structures

We have used 2D matrices
I Can have n-dimensions
I Every element must be the same type (ex. integers, doubles,

characters...)
I Matrices are space-efficient and convenient for calculation
I Large matrices with many zeros can be made sparse
I a=zeros(100); a(1,3)=10; a(21,5)=pi; b=sparse(a)

Sometimes, more complex data structures are more appropriate
I F Cell array: it’s like an array, but elements don’t have to be the same

type
I F Structs: can bundle variable names and values into one structure (Like

object oriented programming in MATLAB)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 9 / 28



Cell arrays

A cell is just like a matrix, but each field can contain anything (even
other matrices):

One cell can contain people’s names, ages, and the ages of their
children

To do the same with matrices, you would need 3 variables and
padding

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 10 / 28



Cell arrays

To initialize a cell, specify the size
I >> a=cell(3,10);

Or do it manually, with curly braces {}
I >> c={’hello world’,[1 5 6 2],rand(3,2)};
I c is a cell with 1 row and 3 columns

Each element of a cell can be anything

To access a cell element, use curly braces {}
I >> a{1,1}=[1 3 4 -10];
I >> a{2,1}=’hello world 2’;
I >> a{1,2}=c{3};

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 11 / 28



Structs

Structs allow you to name and bundle relevant variables
I Like C-structs, which are objects with fields

To initialize an empty struct:
I >> s=struct([]);

F size(s) will be 1x1
F initialization is optional but is recommended when using large structs

To add fields
I >> s.name = ’Jack Bauer’;
I >> s.scores = [95 98 67];
I >> s.year = ’G3’;

F Fields can be anything: matrix, cell, even struct
F Useful for keeping variables together

For more information, see doc struct

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 12 / 28



Struct Arrays

To initialize a struct array, give field, values pairs
I >> ppl=struct(’name’,{’John’,’Mary’,’Leo’}...

,’age’,{32,27,18},’childAge’,{[2;4],1,[]});
F size(s2)=1x3
F every cell must have the same size

I >> person=ppl(2);
F person is now a struct with fields name, age, children
F the values of the fields are the second index into each cell

>> person.name
I Returns ’Mary’

>> ppl(1).age
I Returns 32

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 13 / 28



Struct access

To access 1x1 struct fields, give name of the field
I >> stu=s.name;
I >> scor=s.scores;

F 1x1 structs are useful when passing many variables to a function. put
them all in a struct, and pass the struct

To access nx1 struct arrays, use indices
I >> person=ppl(2);

F person is a struct with name, age, and child age

I >> personName=ppl(2).name;
F personName is ’Mary’

I >> a=[ppl.age];
F a is a 1x3 vector of the ages; this may not always work, the vectors

must be able to be concatenated

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 14 / 28



Exercise 2

Cells

Create a script called sentenceGen

Make a 3x2 cell, and put three names into the first column, and
adjectives into the second column

Pick two random integers in [1 2 3]

Display/print a sentence of the form ’name is adjectives.’

Run the script a few times

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 15 / 28



Exercise 2 solution

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 16 / 28



TOC

1 Probability and Statistics

2 Data Structures

3 Images and Animation

4 Debugging

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 17 / 28



Reading/Writing Images

Load/Read images into MATLAB with imread
I it supports most image formats
I jpeg, tiff, gif, bmp, png, hdf, pcx, xwd, ico, cur, ras, pbm, pgm, ppm
I see doc imread

Create/Write images with imwrite
I see doc imwrite

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 18 / 28



Animations

MATLAB makes it easy to capture movie frames and play them back
automatically

The most common movie formats are
I avi
I gif

Avi
I good when you have ’natural’ frames with lots of colors and few clearly

defined edges

gif
I Good for making movies of plots or text where only a few colors exist

(limited to 256) and there are well-defined lines

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 19 / 28



Creating animations

Display in figure

for t=1:30

imagesc(rand(200));

colormap(gray);

pause(.5);

end

Save as avi movie
for t=1:30

imagesc(rand(200));

colormap(gray);

M(t) = getframe;

end

movie2avi(M,’myMov.avi’);

To create gifs use imwrite

Movies and animations are useful when dealing with dynamic systems

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 20 / 28



TOC

1 Probability and Statistics

2 Data Structures

3 Images and Animation

4 Debugging

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 21 / 28



Display data in the command window

When debugging scripts or functions, use disp (or fprintf) to print
messages to the command window

I >> disp(’starting loop’)
I >> disp(’loop is over’)

F disp prints the given string to the command window

It’s also helpful to show variable values
I >> disp(strcat([’loop iteration ’,num2str(n)]))
I strcat concatenates the given strings

Sometimes it’s easier to remove some semicolons to print to the command
window!

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 22 / 28



Debugging

To use the debugger, set breakpoints
I Click on - next to line numbers in MATLAB files
I Each red dot that appears is a breakpoint
I Run the program
I The program pauses when it reaches a breakpoint
I Use the command window to probe variables
I Use the debugging buttons to control debugger

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 23 / 28



Example

Insert breakpoints

Run the code

Notice that the program stops

Inspect variables in the workspace

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 24 / 28



Exercise

Debug the function

function plotTenLines

% make x vector

x=-1:0.01:1;

% make a figure and plot 10 random lines

for n=1:10

plot(x,polyval(rand(3,1),x),’color’,rand(3,1));

hold on;

legendNames(n,:)=[’Line ’ num2str(n)];

end

xlabel(’X’);

ylabel(’Y’);

title(’Ten lines’);

legend(legendNames);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 25 / 28



Solution

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 26 / 28



Performance Measures

It can be useful to know how long your code takes to run
I To predict how long a loop will take
I To pinpoint inefficient code

You can time operations using tic/toc:

>> tic;

>> CommandBlock1

>> a=toc;

>> CommandBlock2

>> b=toc;

I tic resets the timer
I Each toc returns the current value in seconds
I You may have multiple tocs per tic

You may also use the MATLAB profiler

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 27 / 28



>> THE END

Next week there is no lecture, the final lecture will be announced on email

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 4 10. October 2014 28 / 28


	Probability and Statistics
	Data Structures
	Images and Animation
	Debugging

