MATLAB Introduction Course:
 Lecture 3

Øivind K. Kjerstad

10. October 2014

(1) Linear Algebra

(3) Polynomials

Solving Linear Equations

- Given a system of linear equations

$$
\begin{aligned}
x+2 y-3 z & =5 \\
-3 x-y+z & =-8 \\
x-y+z & =0
\end{aligned}
$$

- Construct matrices so the system is described by $A x=b$
- >> $A=\left[\begin{array}{llllll}1 & 2 & -3 ;-3 & -1 & 1 ; 1 & -1\end{array}\right]$
- >> b=[5; -8; 0]
- Solve with a single line of code!
- >> $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$
- x is a 3×1 vector containing the values of x, y, and z
- The \ will work with square or rectangular systems
- Gives least squares solution for rectangular systems. Solution depends on whether the system is over or underdetermined

Solving Linear Equations

- Given a matrix
- >> mat=[11 2 -3;-3 -1 1;1 -111$]$
- The rank of a matrix
- rank(mat)
- The number of linearly independent rows or columns
- The determinant
- det (mat)
- mat must be square
- If the determinant is nonzero, then the matrix is invertible
- The matrix inverse
- inv(mat)
- if an equation is of the form $A x=b$ with A a square matrix, $x=A \backslash b$ is the same as $\mathrm{x}=\operatorname{inv}(\mathrm{A}) * \mathrm{~b}$

Matrix Decompositions

- MATLAB has several built-in matrix decomposition methods
- The most common are:
- $[\mathrm{V}, \mathrm{D}]=\mathrm{eig}(\mathrm{X})$
\star Eigenvalue decomposition
- $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X})$
\star Singular value decomposition
- $[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{X})$
\star QR decomposition
- For more information, see help\doc

Exercise 1: Solve Linear Systems

Exercise 1a

The linear system:

$$
\begin{aligned}
x+4 y & =34 \\
-3 x+y & =2
\end{aligned}
$$

- Determine the rank of the problem
- Solve for x and y

Exercise 1b

The linear system:

$$
\begin{array}{r}
2 x-2 y=4 \\
-x+y=3 \\
3 x+4 y=2
\end{array}
$$

- Determine the rank of the problem
- Solve for x and y
- Determine the least squares error

Solution

```
Exercise 1a
A=[1 4;-3 1];
b=[34;2];
rank(A)
x=inv(A)*b;
```


Exercise 1b

$\mathrm{A}=[2-2 ;-11 ; 34]$;
b=[4;3;2];
rank(A)
$\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$
error=abs (A*x-b)
(1) Linear Algebra
(2) Polynomials

3 Optimization
(4) Differentiation/Integration
(3) Differential Equations

Polynomials

- Many functions can be well described by a high-order polynomial
- MATLAB represents a polynomials by a vector of coefficients
- $p(x)=a x^{3}+b x^{2}+c x+d$
- $P=\left[\begin{array}{lll}a & b & d\end{array}\right]$

$$
\begin{aligned}
& \text { Examples } \\
& p(x)=x^{2}-2 \Rightarrow P=\left[\begin{array}{lll}
1 & 0 & -2
\end{array}\right] \\
& p(x)=2 x^{3} \Rightarrow P=\left[\begin{array}{llll}
2 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Polynomial Operations

- P is a vector of length $N+1$ describing an N-th order polynomial
- Polynomial roots
- $\gg r=$ roots (P)
- r is a vector of length N
- Polynomial from the roots
$\rightarrow \gg P=p o l y(r)$
- r is a vector of length N
- Evaluate a polynomial at a point
- >> y0 = polyval(P,x0)
- $x 0$ is a single value; $y 0$ is a single value
- Evaluate a polynomial at many points
- >> y = polyval (P, x)
- x is a vector; y is a vector

Polynomial Fitting

- MATLAB makes it very easy to fit polynomials to data
- polyfit

Example

Given data vectors $X=\left[\begin{array}{lll}-1 & 0 & 2\end{array}\right]$ and $Y=\left[\begin{array}{lll}0 & -1 & 3\end{array}\right]$
p = polyfit(X,Y,2)
plot(X,Y,'o', 'MarkerSize', 10);
hold on;
plot(-3:.01:3,polyval(p,-3:.01:3), 'r--');
This finds the best second order polynomial that fits the points $(-1,0),(0,-1)$, and $(2,3)$. See doc polyfit for more info

MATLAB has a toolbox for fitting data to expressions, see cftool and splinetool

Exercise 2: Polynomial Fitting

Polynomial Fitting

- Evaluate $y=x^{2}$ for $x=-4: 0.1: 4$
- Add random noise to y, use randn
- Fit a 2nd degree polynomial to the noisy data
- Plot the noisy data using circular markers and the fitted polynomial using a solid red line

Solution

TOC

(1) Linear Algebra

(3) Optimization
© Differentiation/Integration
(3) Differential Equations

Nonlinear Root Finding

- Many real-world problems require us to solve $f(x)=0$
- Can use fzero to calculate roots for any arbitrary function
- fzero needs a function passed to it
- We will see this type of operation more as we go into solving equations
- >> x=fzero(@myfun,x0)


```
CommandWindow 
    x =
    1.3367
fx >>
```


Minimizing a Function

- fminbnd: minimizing a function over a bounded interval
- >> x=fminbnd(@myfun,-1,2);
\star myfun takes a scalar input and returns a scalar output
\star myfun find the minimum in the interval $-1 \leq x \leq 2$
- fminsearch: unconstrained interval
- >> x=fminsearch (@myfun, .5) ;
\star finds the local minimum of myfun starting at $x=0.5$

Anonymous Functions

- What if myfun is relatively simple?
- Then, using anonymous functions can be more efficient and simpler
- In practice this is writing the function directly into the function call
- >> x=fzero(@(input) (function expression), x0)

```
Examples
>> x=fzero(@(x)(cos(exp(x))+x^2-1),x0)
>> x=fminbnd(@(x)(cos(exp(x))+x^2-1),x_low,x_high);
>> x=fminsearch(@(x)(cos(exp(x))+x^2-1),x0);
```


Optimization Toolbox

- If you are familiar with optimization methods, use the optimization toolbox
- Useful for larger, more structured optimization problems
- It is located under MATLAB apps
- Sample functions (see helpfor more info)
- linprog
\star Linear programming using interior point methods
- quadprog
* Quadratic programming solver
- fmincon
\star Constrained nonlinear optimization

Optimization Toolbox

Exercise 3: Find Minimum

Exercise 3: Find Minimum

- Find the minimum of the function $f(x)=\cos (x) \sin (10 x) e^{|x|}$ over the range $x \in[-\pi \pi]$ using fminbnd
- Plot the function for the given range
- Plot the found minimum solution in the same figure

Solution

Remember to check what built-in functions do!

TOC

(3) Optimization
(4) Differentiation/Integration
© Differential Equations

Numerical Differentiation

- MATLAB can differentiate numerically using diff
- diff computes the first difference
- diff also works on matrices
- Computes the first difference along the 2nd dimension
- The opposite of diff is the

```
Example
x=0:0.01:2*pi;
y=sin(x);
dydx=diff(y)./diff(x);
``` cumulative sum cumsum
- See help for more details
- For the 2D gradient, see gradient

\section*{Numerical Integration}
- MATLAB includes the most common integration methods
- Adaptive Simpson's quadrature (input is a function)
- q=quad('myFun', 0,10);
- \(q\) is the integral of the function myFun from 0 to 10
- q2=quad(@(x) \(\sin (x) * x, 0, p i)\);
- q2 is the integral of \(\sin (x) x\) from 0 to \(\pi\)
- Trapezoidal rule (input is a vector)
- >> x=0:0.01:pi;
- >> \(z=\operatorname{trapz}(x, \sin (x))\);
- \(z\) is the integral of \(\sin (x)\) from 0 to \(\pi\)
- >>z2=trapz(x,sqrt(exp(x))./x);
- \(z 2\) is the integral of \(\sqrt{\frac{e^{x}}{x}}\) from 0 to \(\pi\)

\section*{TOC}

\section*{(1) Linear Algebra}
© Optimization
© Differentiation/Integration
(3) Differential Equations

\section*{ODE Solvers: Method Overview}
- Given a differential equation, the solution can be found by integration:

- Evaluate the derivative at a point and approximate by straight line
- Errors accumulate!
- Variable timestep can decrease the number of iterations

\section*{ODE Solvers: MATLAB}
- MATLAB contains implementations of common ODE solvers
- Using the correct ODE solver can save time and give more accurate results
- ode23

ฝ Low-order solver. Use when integrating over small intervals or when accuracy is less important than speed
- ode45
\(\star\) High order (Runge-Kutta) solver. High accuracy and reasonable speed. Most commonly used
- ode15s
» Stiff ODE solver (Gear's algorithm), use when the diff eq's have time constants that vary by orders of magnitude

\section*{ODE Solvers: Standard Syntax}

The ODE function call
[t,y]=ode45 ('myODE', [0, 10] , x0)
- ode45 is the solver
- 'myODE' is the function to be evaluated
- \([0,10]\) is the simulation time range
- \(x 0\) is the initial conditions
- Inputs
- ODE function name (or anonymous function). This function takes inputs (\(\mathrm{t}, \mathrm{y}\)), and returns \(\mathrm{dy} / \mathrm{dt}\)
- Time interval: 2-element vector specifying initial and final time
- Initial conditions: column vector with an initial condition for each ODE. This is the first input to the ODE function
- Outputs
- t contains the time points
- y contains the corresponding values of the integrated variables.

\section*{ODE Example: The pendulum}

\section*{Example: The pendulum} equations
\[
\ddot{\theta}+\frac{g}{L} \sin (\theta)=0
\]

Define the state \(x=[\theta \gamma]^{\top}\), where \(\dot{\theta}=\gamma\). Then we can write the system as
- Must make into a system of first-order equations to use ODE solvers
- Nonlinear equations are OK!
\[
\begin{aligned}
& \dot{\theta}=\gamma \\
& \dot{\gamma}=-\frac{g}{L} \sin (\theta)
\end{aligned}
\]

\section*{ODE Example: The pendulum}

\(\gg[t, x]=o d e 45\left(' p e n d u l u m ',\left[\begin{array}{ll}0 & 10],\left[0.9^{\star} p i\right. \\ 0\end{array}\right)\right.\))
\(\gg\) plot (x)
\(f x>\)

\section*{ODE Solvers: Custom Options}
- MATLAB's ODE solvers use a variable timestep
- Sometimes a fixed timestep is desirable
- [t,y]=ode45('myODE', [0:0.001:0.5],x0);
\(\star\) Specify the timestep by giving a vector of times
\(\star\) The function value will be returned at the specified points
\(\star\) Fixed timestep is usually slower because function values are interpolated to give values at the desired timepoints
- You can customize the error tolerances using odeset
- options=odeset('RelTol',1e-6,'AbsTol',1e-10);
- [t,y]=ode45('myODE', [0 100],x0,options);
\(\star\) This guarantees that the error at each step is less than RelToltimes the value at that step, and less than AbsTol
\(\star\) Decreasing error tolerance can considerably slow the solver
* See doc odesetfor a list of options you can customize

\section*{Exercise 4: ODE}

\section*{Exercise 4: ODE}
- Implement the ODE:
\[
\frac{d y}{d t}=-\frac{t y}{10}
\]
- with initial condition \(\mathrm{y}(0)=10\) over the interval \(t=[0,10]\)
- Use ode45
- Plot \(y(t)\)

\section*{Exercise 4: Solution}

\section*{>> THE END}```

