
MATLAB Introduction Course:
Lecture 3

Øivind K. Kjerstad

10. October 2014

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 1 / 34

TOC

1 Linear Algebra

2 Polynomials

3 Optimization

4 Differentiation/Integration

5 Differential Equations

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 2 / 34

Solving Linear Equations

Given a system of linear equations

x + 2y − 3z = 5

−3x − y + z = −8

x − y + z = 0

Construct matrices so the system is described by Ax = b
I >> A=[1 2 -3;-3 -1 1;1 -1 1]
I >> b=[5; -8; 0]

Solve with a single line of code!
I >> x = A\b
I x is a 3x1 vector containing the values of x, y, and z

The \ will work with square or rectangular systems

Gives least squares solution for rectangular systems. Solution depends
on whether the system is over or underdetermined

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 3 / 34

Solving Linear Equations

Given a matrix
I >> mat=[1 2 -3;-3 -1 1;1 -1 1]

The rank of a matrix
I rank(mat)
I The number of linearly independent rows or columns

The determinant
I det(mat)
I mat must be square
I If the determinant is nonzero, then the matrix is invertible

The matrix inverse
I inv(mat)
I if an equation is of the form Ax = b with A a square matrix, x = A\b

is the same as x=inv(A)*b

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 4 / 34

Matrix Decompositions

MATLAB has several built-in matrix decomposition methods

The most common are:
I [V,D]=eig(X)

F Eigenvalue decomposition

I [U,S,V]=svd(X)
F Singular value decomposition

I [Q,R]=qr(X)
F QR decomposition

For more information, see help\doc

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 5 / 34

Exercise 1: Solve Linear Systems

Exercise 1a
The linear system:

x + 4y = 34

−3x + y = 2

Determine the rank of the problem

Solve for x and y

Exercise 1b
The linear system:

2x − 2y = 4

−x + y = 3

3x + 4y = 2

Determine the rank of the problem

Solve for x and y

Determine the least squares error

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 6 / 34

Solution

Exercise 1a

A=[1 4;-3 1];

b=[34;2];

rank(A)

x=inv(A)*b;

Exercise 1b

A=[2 -2;-1 1;3 4];

b=[4;3;2];

rank(A)

x=A\b

error=abs(A*x-b)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 7 / 34

TOC

1 Linear Algebra

2 Polynomials

3 Optimization

4 Differentiation/Integration

5 Differential Equations

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 8 / 34

Polynomials

Many functions can be well described by a high-order polynomial

MATLAB represents a polynomials by a vector of coefficients
I p(x) = ax3 + bx2 + cx + d
I P = [a b c d]

Examples

p(x) = x2 − 2 ⇒ P = [1 0 -2]

p(x) = 2x3 ⇒ P = [2 0 0 0]

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 9 / 34

Polynomial Operations

P is a vector of length N+1 describing an N-th order polynomial

Polynomial roots
I >> r = roots(P)
I r is a vector of length N

Polynomial from the roots
I >> P = poly(r)
I r is a vector of length N

Evaluate a polynomial at a point
I >> y0 = polyval(P,x0)
I x0 is a single value; y0 is a single value

Evaluate a polynomial at many points
I >> y = polyval(P,x)
I x is a vector; y is a vector

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 10 / 34

Polynomial Fitting

MATLAB makes it very easy to fit polynomials to data
I polyfit

Example

Given data vectors X =
[
−1 0 2

]
and Y =

[
0 −1 3

]
p = polyfit(X,Y,2)

plot(X,Y,’o’, ’MarkerSize’, 10);

hold on;

plot(-3:.01:3,polyval(p,-3:.01:3), ’r--’);

This finds the best second order polynomial that fits the points
(-1,0),(0,-1), and (2,3). See doc polyfit for more info

MATLAB has a toolbox for fitting data to expressions, see cftool and
splinetool

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 11 / 34

Exercise 2: Polynomial Fitting

Polynomial Fitting

Evaluate y = x2 for x=-4:0.1:4

Add random noise to y, use randn

Fit a 2nd degree polynomial to the noisy data

Plot the noisy data using circular markers and the fitted polynomial
using a solid red line

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 12 / 34

Solution

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 13 / 34

TOC

1 Linear Algebra

2 Polynomials

3 Optimization

4 Differentiation/Integration

5 Differential Equations

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 14 / 34

Nonlinear Root Finding

Many real-world problems require us to solve f (x) = 0

Can use fzero to calculate roots for any arbitrary function
fzero needs a function passed to it

I We will see this type of operation more as we go into solving equations
I >> x=fzero(@myfun,x0)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 15 / 34

Minimizing a Function

fminbnd: minimizing a function over a bounded interval
I >> x=fminbnd(@myfun,-1,2);

F myfun takes a scalar input and returns a scalar output
F myfun find the minimum in the interval −1 ≤ x ≤ 2

fminsearch: unconstrained interval
I >> x=fminsearch(@myfun,.5);

F finds the local minimum of myfun starting at x = 0.5

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 16 / 34

Anonymous Functions

What if myfun is relatively simple?
I Then, using anonymous functions can be more efficient and simpler
I In practice this is writing the function directly into the function call

>> x=fzero(@(input)(function expression),x0)

Examples

>> x=fzero(@(x)(cos(exp(x))+x^2-1),x0)

>> x=fminbnd(@(x)(cos(exp(x))+x^2-1),x_low,x_high);

>> x=fminsearch(@(x)(cos(exp(x))+x^2-1),x0);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 17 / 34

Optimization Toolbox

If you are familiar with optimization methods, use the optimization
toolbox

I Useful for larger, more structured optimization problems
I It is located under MATLAB apps

Sample functions (see helpfor more info)
I linprog

F Linear programming using interior point methods

I quadprog
F Quadratic programming solver

I fmincon
F Constrained nonlinear optimization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 18 / 34

Optimization Toolbox

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 19 / 34

Exercise 3: Find Minimum

Exercise 3: Find Minimum

Find the minimum of the function f (x) = cos(x)sin(10x)e |x | over the
range x ∈ [−π π] using fminbnd

Plot the function for the given range

Plot the found minimum solution in the same figure

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 20 / 34

Solution

Remember to check what built-in functions do!

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 21 / 34

TOC

1 Linear Algebra

2 Polynomials

3 Optimization

4 Differentiation/Integration

5 Differential Equations

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 22 / 34

Numerical Differentiation

MATLAB can differentiate
numerically using diff

I diff computes the first
difference

diff also works on matrices
I Computes the first

difference along the 2nd
dimension

I The opposite of diff is the
cumulative sum cumsum

I See help for more details

For the 2D gradient, see
gradient

Example

x=0:0.01:2*pi;

y=sin(x);

dydx=diff(y)./diff(x);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 23 / 34

Numerical Integration

MATLAB includes the most common integration methods

Adaptive Simpson’s quadrature (input is a function)
I q=quad(’myFun’,0,10);
I q is the integral of the function myFun from 0 to 10
I q2=quad(@(x) sin(x)*x,0,pi);
I q2 is the integral of sin(x)x from 0 to π

Trapezoidal rule (input is a vector)
I >> x=0:0.01:pi;
I >> z=trapz(x,sin(x));
I z is the integral of sin(x) from 0 to π
I >>z2=trapz(x,sqrt(exp(x))./x);

I z2 is the integral of
√

ex

x from 0 to π

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 24 / 34

TOC

1 Linear Algebra

2 Polynomials

3 Optimization

4 Differentiation/Integration

5 Differential Equations

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 25 / 34

ODE Solvers: Method Overview

Given a differential equation, the solution can be found by integration:

I Evaluate the derivative at a point and approximate by straight line
I Errors accumulate!
I Variable timestep can decrease the number of iterations

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 26 / 34

ODE Solvers: MATLAB

MATLAB contains implementations of common ODE solvers

Using the correct ODE solver can save time and give more accurate
results

I ode23
F Low-order solver. Use when integrating over small intervals or when

accuracy is less important than speed

I ode45
F High order (Runge-Kutta) solver. High accuracy and reasonable speed.

Most commonly used

I ode15s
F Stiff ODE solver (Gear’s algorithm), use when the diff eq’s have time

constants that vary by orders of magnitude

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 27 / 34

ODE Solvers: Standard Syntax

The ODE function call

[t,y]=ode45(’myODE’,[0,10],x0)

ode45 is the solver

’myODE’ is the function to be evaluated

[0, 10] is the simulation time range

x0 is the initial conditions

Inputs
I ODE function name (or anonymous function). This function takes

inputs (t,y), and returns dy/dt
I Time interval: 2-element vector specifying initial and final time
I Initial conditions: column vector with an initial condition for each

ODE. This is the first input to the ODE function

Outputs
I t contains the time points
I y contains the corresponding values of the integrated variables.

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 28 / 34

ODE Example: The pendulum

Example: The pendulum
equations

θ̈ +
g

L
sin(θ) = 0

Define the state x = [θ γ]>,
where θ̇ = γ. Then we can write
the system as

θ̇ = γ

γ̇ = −g

L
sin(θ)

Must make into a system of
first-order equations to use
ODE solvers

Nonlinear equations are OK!

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 29 / 34

ODE Example: The pendulum

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 30 / 34

ODE Solvers: Custom Options

MATLAB’s ODE solvers use a variable timestep

Sometimes a fixed timestep is desirable
I [t,y]=ode45(’myODE’,[0:0.001:0.5],x0);

F Specify the timestep by giving a vector of times
F The function value will be returned at the specified points
F Fixed timestep is usually slower because function values are

interpolated to give values at the desired timepoints

You can customize the error tolerances using odeset
I options=odeset(’RelTol’,1e-6,’AbsTol’,1e-10);
I [t,y]=ode45(’myODE’,[0 100],x0,options);

F This guarantees that the error at each step is less than RelToltimes the
value at that step, and less than AbsTol

F Decreasing error tolerance can considerably slow the solver
F See doc odesetfor a list of options you can customize

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 31 / 34

Exercise 4: ODE

Exercise 4: ODE

Implement the ODE:
dy

dt
= − ty

10

with initial condition y(0) = 10 over the interval t = [0, 10]

Use ode45

Plot y(t)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 32 / 34

Exercise 4: Solution

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 33 / 34

>> THE END

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 3 10. October 2014 34 / 34

	Linear Algebra
	Polynomials
	Optimization
	Differentiation/Integration
	Differential Equations

