MATLAB Introduction Course: Lecture 3

Øivind K. Kjerstad

10. October 2014

Øivind K. Kjerstad

MATLAB Introduction Course:Lecture 3

10. October 2014 1 / 34

TOC

Linear Algebra

- Polynomials
- Optimization
- Oifferentiation / Integration
- **5** Differential Equations

Solving Linear Equations

• Given a system of linear equations

$$x + 2y - 3z = 5$$
$$-3x - y + z = -8$$
$$x - y + z = 0$$

• Construct matrices so the system is described by Ax = b

- ► >> A=[1 2 -3;-3 -1 1;1 -1 1]
- ► >> b=[5; -8; 0]

• Solve with a single line of code!

 \blacktriangleright >> x = A\b

- x is a 3x1 vector containing the values of x, y, and z
- The \ will work with square or rectangular systems
- Gives least squares solution for rectangular systems. Solution depends on whether the system is over or underdetermined

Solving Linear Equations

- Given a matrix
 - >> mat=[1 2 -3;-3 -1 1;1 -1 1]
- The rank of a matrix
 - rank(mat)
 - The number of linearly independent rows or columns
- The determinant
 - det(mat)
 - mat must be square
 - If the determinant is nonzero, then the matrix is invertible
- The matrix inverse
 - inv(mat)
 - if an equation is of the form Ax = b with A a square matrix, x = A\b is the same as x=inv(A)*b

Matrix Decompositions

- MATLAB has several built-in matrix decomposition methods
- The most common are:
 - ▶ [V,D]=eig(X)
 - ★ Eigenvalue decomposition
 - [U,S,V]=svd(X)
 - ★ Singular value decomposition
 - ▶ [Q,R]=qr(X)
 - ★ QR decomposition
- For more information, see help\doc

Exercise 1: Solve Linear Systems

Exercise 1a

The linear system:

$$x + 4y = 34$$
$$-3x + y = 2$$

- Determine the rank of the problem
- Solve for x and y

Exercise 1b

The linear system:

$$2x - 2y = 4$$
$$-x + y = 3$$
$$3x + 4y = 2$$

- Determine the rank of the problem
- Solve for x and y
- Determine the least squares error

Solution

Exercise 2	la		
A=[1 4;-	3 1];		
b=[34;2]	;		
<pre>rank(A)</pre>			
x=inv(A)	*b;		

```
Exercise 1b
A=[2 -2;-1 1;3 4];
b=[4;3;2];
rank(A)
x=A\b
error=abs(A*x-b)
```

TOC

Linear Algebra

- Polynomials
- Optimization
- Oifferentiation / Integration
- **5** Differential Equations

Polynomials

- Many functions can be well described by a high-order polynomial
- MATLAB represents a polynomials by a vector of coefficients

•
$$p(x) = ax^3 + bx^2 + cx + d$$

▶ P = [a b c d]

Examples

$$p(x) = x^2 - 2 \Rightarrow P = [1 \ 0 \ -2]$$

$$p(x) = 2x^3 \Rightarrow P = [2 \ 0 \ 0 \ 0]$$

Polynomial Operations

- P is a vector of length N+1 describing an N-th order polynomial
- Polynomial roots
 - >> r = roots(P)
 - r is a vector of length N
- Polynomial from the roots
 - >> P = poly(r)
 - r is a vector of length N
- Evaluate a polynomial at a point
 - >> y0 = polyval(P,x0)
 - x0 is a single value; y0 is a single value
- Evaluate a polynomial at many points
 - >> y = polyval(P,x)
 - x is a vector; y is a vector

Polynomial Fitting

- MATLAB makes it very easy to fit polynomials to data
 - ▶ polyfit

Example

```
Given data vectors X = \begin{bmatrix} -1 & 0 & 2 \end{bmatrix} and Y = \begin{bmatrix} 0 & -1 & 3 \end{bmatrix}
```

```
p = polyfit(X,Y,2)
plot(X,Y,'o', 'MarkerSize', 10);
hold on;
plot(-3:.01:3,polyval(p,-3:.01:3), 'r--');
```

This finds the best second order polynomial that fits the points (-1,0),(0,-1), and (2,3). See doc polyfit for more info

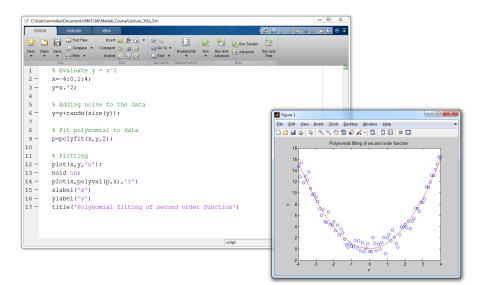
MATLAB has a toolbox for fitting data to expressions, see cftool and splinetool

Exercise 2: Polynomial Fitting

Polynomial Fitting

- Evaluate $y = x^2$ for x=-4:0.1:4
- Add random noise to y, use randn
- Fit a 2nd degree polynomial to the noisy data
- Plot the noisy data using circular markers and the fitted polynomial using a solid red line

Solution



- Linear Algebra
- Polynomials
- Optimization
- Oifferentiation / Integration
- **5** Differential Equations

Nonlinear Root Finding

- Many real-world problems require us to solve f(x) = 0
- Can use fzero to calculate roots for any arbitrary function
- fzero needs a function passed to it
 - ▶ We will see this type of operation more as we go into solving equations
 - >> x=fzero(@myfun,x0)

8 c	:\Users	\oivind	ka\Do	cumen	IS/MA	LAB	Matlab	Cour	se\Lecti	ire_3\n	nyfun.n	•								 			l	- 6	2	x
	EDITOR			PUBLISH	1		VEW												3144	8 H	<u> </u>	i 🛍 S	20	8 (20	×
Nev Nev	v Op	F	ve (고 Find 길 Com 그 Print i On	oare ·		Commer Inder	at <u>%</u> at <u>5</u> EDI		2		o To 👻 nd 👻	Break	points • POINTS	Run	Run a Advar	br	Run Section	Run and Time							
2 3 - 4 5 - 6		y = end		os (e	xp (x))	+x.	^2-	1;																	E
7	_																_		myfun				Ln 4	C	ol 1	
Co	ımman	d Windo	w									_												_	(0
	>>	х =	fz	ero	(@m	fu	n,1)																			
	x	-																								
		1.	336	57																						
fz	; >>																									

Minimizing a Function

- fminbnd: minimizing a function over a bounded interval
 - >> x=fminbnd(@myfun,-1,2);
 - ***** myfun takes a scalar input and returns a scalar output
 - ***** myfun find the minimum in the interval $-1 \le x \le 2$
- fminsearch: unconstrained interval
 - >> x=fminsearch(@myfun,.5);
 - ***** finds the local minimum of myfun starting at x = 0.5

Anonymous Functions

- What if myfun is relatively simple?
 - > Then, using anonymous functions can be more efficient and simpler
 - In practice this is writing the function directly into the function call
- >> x=fzero(@(input)(function expression),x0)

Examples

- >> x=fzero(@(x)(cos(exp(x))+x^2-1),x0)
- >> x=fminbnd(@(x)(cos(exp(x))+x^2-1),x_low,x_high);
- >> x=fminsearch(@(x)(cos(exp(x))+x^2-1),x0);

Optimization Toolbox

- If you are familiar with optimization methods, use the optimization toolbox
 - Useful for larger, more structured optimization problems
 - It is located under MATLAB apps
- Sample functions (see helpfor more info)
 - linprog
 - ★ Linear programming using interior point methods
 - quadprog
 - ★ Quadratic programming solver
 - ▶ fmincon
 - * Constrained nonlinear optimization

Optimization Toolbox

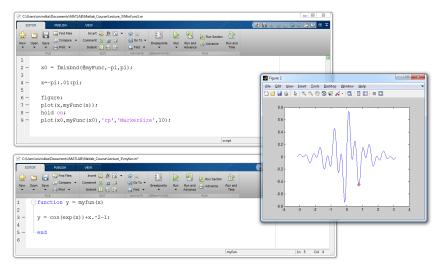
A Optimization Tool		- 3 <u>- x -</u>)
file Help		
Problem Setup and Results	Options	Quick Reference <<
Solver Iminop - Constrained nonlinear minimization	E Stopping citeria	A
Algorithm Interior point	Max iterations: 🛞 Use default: 1000	
Problem	 Specify 	
Objective function: •	Max function evaluations:	
Derivatives Approximated by solver	 Specify: 	fmincon Solver
Start point	X tolerance: Use default 1e-10	Find a minimum of a constrained nonlinear multivariable
Constraints	© Secoly	function using the interior-point algorithm.
Linear inequalities: A: b:	Function tolerance: W Use default 1e-6	Click to expand the section below corresponding to your bask.
Linear equalities: Aeg beg	O Specify:	Problem Setup and Results
Bounds: Lower Upper	Constraint tolerance @ Use default 1e-6	Solver and Algorithm
Nenlinear constraint functions	Consum meane so se de de de la consumero	Problem
Derivatives Approximated by solver •	SOP constraint tolerance: (II) Use default: 1e-6	Constraints
Run solver and view results		Run solver and view results
Start Peuse Step	Specify:	Options
Current iteration:	Unboundedness threshold: 🔮 Use default: -1.e20	 Stopping criteria
	Specity:	Function value check
	E Function value check	User-supplied derivatives
	Error if user-supplied function returns Inf, NaN or complex	 Approximated derivatives
	E User-supplied derivatives	+ Hessian
	Validate user-supplied derivatives	 Algorithm settings
	Hessian sparsity pattern: IR Use default sparse(onesinumberOfVariables))	Inneriteration stopping criteria
	 Specify: 	Prot functions
	Hessian multiply function: (ii) Use default: No multiply function	Cutput function
	Specific	 Display to command window
		Suggested Next Steps
	E Approximated derivatives	When the Solver Fails
	Type: forward differences	When the Solver Might Have Succeeded
Final point	Relative perturbation vector n @ Use default: sqtt(eps)*ones(numberOfVariables,1)	When the Solver Succeeds
	Specify	More Information
	Minimum perturbation (*1): Use default: 0	User Guide
	Specify:	Function equivalent
	Maximum perturbation (*) 🛞 Use default (mf	
	© Secolo	
<u>r</u> , , , , , , , , , , , , , , , , , , ,		•

Exercise 3: Find Minimum

Exercise 3: Find Minimum

- Find the minimum of the function f(x) = cos(x)sin(10x)e^{|x|} over the range x ∈ [-π π] using fminbnd
- Plot the function for the given range
- Plot the found minimum solution in the same figure

Solution



Remember to check what built-in functions do!

Øivind K. Kjerstad

MATLAB Introduction Course:Lecture 3

- Linear Algebra
- Polynomials
- Optimization
- Differentiation/Integration
- **5** Differential Equations

Numerical Differentiation

- MATLAB can differentiate numerically using diff
 - diff computes the first difference
- diff also works on matrices
 - Computes the first difference along the 2nd dimension
 - The opposite of diff is the cumulative sum cumsum
 - See help for more details
- For the 2D gradient, see gradient

```
Example
x=0:0.01:2*pi;
y=sin(x);
dydx=diff(y)./diff(x);
```

Numerical Integration

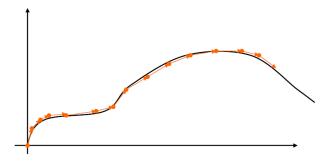
- MATLAB includes the most common integration methods
- Adaptive Simpson's quadrature (input is a function)
 - q=quad('myFun',0,10);
 - q is the integral of the function myFun from 0 to 10
 - q2=quad(@(x) sin(x)*x,0,pi);
 - q2 is the integral of sin(x)x from 0 to π
- Trapezoidal rule (input is a vector)
 - >> x=0:0.01:pi;
 - >> z=trapz(x,sin(x));
 - z is the integral of sin(x) from 0 to π
 - >>z2=trapz(x,sqrt(exp(x))./x);

• z2 is the integral of
$$\sqrt{\frac{e^x}{x}}$$
 from 0 to π

- Linear Algebra
- Polynomials
- Optimization
- Oifferentiation / Integration
- **5** Differential Equations

ODE Solvers: Method Overview

• Given a differential equation, the solution can be found by integration:



- Evaluate the derivative at a point and approximate by straight line
- Errors accumulate!
- Variable timestep can decrease the number of iterations

ODE Solvers: MATLAB

- MATLAB contains implementations of common ODE solvers
- Using the correct ODE solver can save time and give more accurate results
 - ode23
 - * Low-order solver. Use when integrating over small intervals or when accuracy is less important than speed
 - ▶ ode45
 - High order (Runge-Kutta) solver. High accuracy and reasonable speed. Most commonly used
 - ode15s
 - ★ Stiff ODE solver (Gear's algorithm), use when the diff eq's have time constants that vary by orders of magnitude

ODE Solvers: Standard Syntax

- The ODE function call
- [t,y]=ode45('myODE',[0,10],x0)
 - ode45 is the solver
 - 'myODE' is the function to be evaluated
 - [0, 10] is the simulation time range
 - x0 is the initial conditions
 - Inputs
 - ODE function name (or anonymous function). This function takes inputs (t,y), and returns dy/dt
 - ► Time interval: 2-element vector specifying initial and final time
 - Initial conditions: column vector with an initial condition for each ODE. This is the first input to the ODE function
 - Outputs
 - t contains the time points
 - y contains the corresponding values of the integrated variables.

ODE Example: The pendulum

Example: The pendulum equations

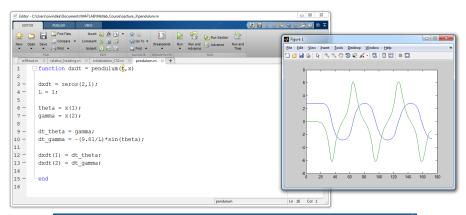
$$\ddot{\theta} + \frac{g}{I}sin(\theta) = 0$$

Define the state $x = [\theta \ \gamma]^{\top}$, where $\dot{\theta} = \gamma$. Then we can write the system as

$$\dot{ heta} = \gamma \ \dot{\gamma} = -rac{ extbf{g}}{L} extbf{sin}(heta)$$

- Must make into a system of first-order equations to use ODE solvers
- Nonlinear equations are OK!

ODE Example: The pendulum



Command Window

ODE Solvers: Custom Options

- MATLAB's ODE solvers use a variable timestep
- Sometimes a fixed timestep is desirable
 - [t,y]=ode45('myODE',[0:0.001:0.5],x0);
 - ★ Specify the timestep by giving a vector of times
 - * The function value will be returned at the specified points
 - Fixed timestep is usually slower because function values are interpolated to give values at the desired timepoints
- You can customize the error tolerances using odeset
 - options=odeset('RelTol',1e-6,'AbsTol',1e-10);
 - [t,y]=ode45('myODE',[0 100],x0,options);
 - * This guarantees that the error at each step is less than RelToltimes the value at that step, and less than AbsTol
 - * Decreasing error tolerance can considerably slow the solver
 - * See doc odesetfor a list of options you can customize

Exercise 4: ODE

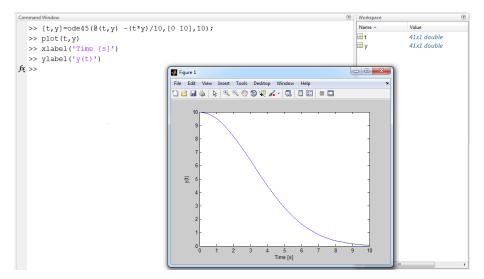
Exercise 4: ODE

• Implement the ODE:

$$\frac{dy}{dt} = -\frac{ty}{10}$$

- with initial condition y(0) = 10 over the interval t = [0, 10]
- Use ode45
- Plot y(t)

Exercise 4: Solution



>> THE END