
MATLAB Introduction Course:
Lecture 2

Øivind K. Kjerstad

3. October 2014

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 1 / 37



Recap

Last time we looked at:

Scripts

Variables

Variable manipulation

Simple plotting

Help

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 2 / 37



TOC

1 Functions

2 Basic programming

3 Line Plots

4 Surface Plots

5 Vectorization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 3 / 37



User-defined functions

Functions look exactly like scripts, but for one difference; Functions
must have a function declaration

This is a valid function!

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 4 / 37



User-defined functions

The function declaration

function [x, y, z] = functionName(a,b,c)

Must have the reserved word: function

If more than one output, then must have brackets

Function name should match MATLAB file name

Inputs must be specified

No need for return: MATLAB ’returns’ the variables whose names
match those in the function declaration

Variable scope: Any variables created within the function but not
returned disappear after the function stops running

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 5 / 37



Why use functions?

They allow us to reuse code instead of rewriting it

Functions allow us to test small parts of our program in isolation from
the rest

They allow us to conceive of our program/script as a bunch of
sub-steps (Each sub-step can be its own function)

Functions allow us to keep our variable workspace clean

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 6 / 37



Functions overloading

We are familiar with functions such as
I zeros
I size
I length
I sum

Look at the help file for how to invoke the function
I help size

Several ways are possible
I d = size(X)
I [m,n] = size(X)
I m = size(X,dim)
I [d1,d2,d3,...,dn] = size(X)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 7 / 37



Functions overloading

MATLAB functions are generally overloaded
I Can take a variable number of inputs
I Can return a variable number of outputs

What would the following commands return:
I >> a=zeros(2,4,8); %n-dimensional matrices are OK
I >> D=size(a)
I >> [m,n]=size(a)
I >> [x,y,z]=size(a)
I >> m2=size(a,2)

You can overload your own functions by having variable input and
output arguments (see varargin, nargin, varargout, nargout)

As you learn MATLAB, don’t worry too much about
writing functions that handle overloading

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 8 / 37



Exercise 1: A sine wave plot function

Create a function that:

Takes two inputs; frequency and amplitude

Has no output

Creates a plot of a sine wave with the given frequency and amplitude
on the range [0, 2π]

For good sampling, use 16 or more points per period

Use function naming as you like

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 9 / 37



Exercise 1: One possible solution

Solutions are not unique! As long as it works, do it your way

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 10 / 37



TOC

1 Functions

2 Basic programming

3 Line Plots

4 Surface Plots

5 Vectorization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 11 / 37



Relational Operators

MATLAB relational operators
I (==) equal
I (~=) not equal
I (> ) greater than
I (< ) less than
I (>=) greater or equal
I (<=) less or equal

Logical operators
I (&&) And
I (‖) Or
I (~) Not
I (xor) Xor
I (all) all
I (any) any

Boolean values: zero is false, nonzero is true

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 12 / 37



if/else/elseif

Basic flow-control, common to most languages

IF

if cond

commands

end

ELSE

if cond

commands

else

commands

end

ELSEIF

if cond1

commands

elseif cond2

commands

else

commands

end

No need for parentheses around cond, command blocks are between
reserved words

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 13 / 37



Example: Coin toss

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 14 / 37



for loops

Use for a known number of iterations

MATLAB syntax:

FOR LOOPS

for n=1:100

commands

end

The loop variable n (can have any naming, but be aware of built-in
variables)

I Is defined as a vector
I Is a scalar within the command block
I Does not have to have consecutive values

The command block
I Anything between the for line and the end

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 15 / 37



while loop

A more general loop, does not need to know the number of iterations

MATLAB syntax:

WHILE LOOPS

while cond

commands

end

The command block will execute while the conditional expression is
true

Infinite loops will occur if cond is true always

Be aware, it may lock up your program! (Use Ctrl + c to end
script/function)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 16 / 37



Exercise 2: Fibonacci numbers

Create a function that:

Takes one input, the length of the Fibonacci sequence

Outputs a row vector of n Fibonacci numbers

In mathematical terms, the sequence Fn of Fibonacci numbers is defined
by the recurrence relation

Fn = Fn−1 + Fn−2

with seed values F1 = 1,F2 = 1.[
1 1 2 3 5 8 13 . . .

]

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 17 / 37



Exercise 2: One possible solution

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 18 / 37



TOC

1 Functions

2 Basic programming

3 Line Plots

4 Surface Plots

5 Vectorization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 19 / 37



Plot Options

You may change the line color, marker style, and line style by adding
a string argument

I >> plot(x,y,’k.-’);
I This is a black line (k) with point markers (.) and a solid line (-)

Specifier Color
y yellow
m magneta
c cyan
r red
g green
b blue
w white
k black

Specifier Marker
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upw. triangle
v Downw. triangle
> Right triangle
< Left triangle
p Pentagram
h Hexagram

Specifier Line style
- Solid line
-- Dashed line
: Dotted line
-. Dash-dot line

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 20 / 37



Line and Marker Options

Everything on a line in a plot can be customized
I Color
I LineStyle
I LineWidth
I Marker
I MarkerEdgeColor
I MarkerFaceColor
I MarkerSize

See doc line_props for a full list of properties that can be specified

Example

>> plot(x,y,’-mo’,’LineWidth’,2,’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,[.49 1 .63],’MarkerSize’,10);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 21 / 37



Working with axis and labels

Set range of plot axis using either
I Axis
I xlim, ylim, zlim

Set axis labels using
I xlabel(’text’)
I ylabel(’text’)
I zlabel(’text’)

Set legend using
I legend(’text1’,’text2’,’..’)

Set plot title using title(’text’)

Example

plot(time,force_1);

hold on;

plot(time,force_2);

xlim([0 100]);

ylim([-10 10]);

xlabel(’Time [s]’);

ylabel(’Force [N]’);

title(’Force plot’);

legend(’Force1’,’Force2’);

The above labels, legend, and title can be customized similarly to
lineSpec

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 22 / 37



Working with the figure

Set figure size and position on screen by either
I figure(’Position’,[xpos ypos width height]);
I f = figure(n);

set(f,’Position’,[xpos ypos width height]);
F This is beneficial to plot in figure n

Whatever is plotted after a figure
deceleration will appear in that figure

I Until a new figure is declared

The output of figure is called the figure
handle

Use the figure handle to add more data to
your figures

Example

f1 = figure(1);

plot(data_1);

hold on;

plot(data_2);

f2 = figure(2);

plot(data_3);

hold on;

plot(data_4);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 23 / 37



Multiple Plots in one Figure

To have multiple axes in one figure
I >> subplot(2,3,1)

F makes a figure with 2 rows and three
columns of axes, and activates the first
axis for plotting

F each axis can have labels, a legend, and
a title

>> subplot(2,3,4:6)
I activating a range of axes fuses them into

one

To close existing figures
I >> close([1 3])

F closes figures 1 and 3

I >> close all
F closes all figures (useful in

scripts/functions)

Example

f1 = figure(1);

subplot(2,1,1);

plot(data_1);

hold on;

plot(data_2);

subplot(2,1,2);

plot(data_3);

hold on;

plot(data_4);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 24 / 37



3D Line Plots

We can plot in 3 dimensions just as easily as in 2, using plot3

Example

time=0:0.001:4*pi;

x=sin(time);

y=cos(time);

z=time;

plot3(x,y,z,’k’,’LineWidth’,2);

The same customization properties apply to plot3 as for plot

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 25 / 37



Saving Figures

Figures can be saved using the toolbar on the figure or using
I savefig
I saveas

The most common formats are
I .fig preserves all information
I .pdf compressed image
I .bmp uncompressed bitmap image
I .eps high-quality scalable format

Only use .jpg for photos!

If you would like to have scalable vector graphics in pdf with latex fonts,
check out plotpdftex in Matlab central file exchange

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 26 / 37



TOC

1 Functions

2 Basic programming

3 Line Plots

4 Surface Plots

5 Vectorization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 27 / 37



3-D Surface Plots

It is often more useful to visualize 3-D data as a surface

MATLAB has many functions for this

Examples

surf

mesh

ribbon

contour3

++

Input arguments are either a matrix or 3 vectors (x,y,z)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 28 / 37



surf

surf puts vertices at specified points in space x,y,z, and connects all
the vertices to make a surface

Example

x=-pi:0.1:pi;

y=-pi:0.1:pi;

[X,Y]=meshgrid(x,y);

Z =sin(X).*cos(Y);

surf(Z)

There are three types of surface shading
I faceted, flat, interp

You can change colormaps
I colormap(gray)

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 29 / 37



Colormaps

You can change the colormap of your plots
I MATLAB default is jet
I colormap(gray)
I colormap(cool)
I colormap(hot)

It is possible to define custom colormaps

Example

map = zeros(256,3);

map(:,2)=(0:255)/255;

colormap(map);

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 30 / 37



Exercise 3: Surface plot

Create a function that:

Takes four inputs; two frequencies and two amplitudes

Has no output

Creates a surface plot of the function z = a1sin(f1x) + a2sin(f2y) on
the range x ∈ [0, 2π], y ∈ [0, 2π]

Use function naming as you like

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 31 / 37



Exercise 3: One possible solution

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 32 / 37



Specialized Plotting Functions

MATLAB has a lot of specialized plotting functions

polar - to make polar plots
I >> polar(0:0.01:2*pi,cos((0:0.01:2*pi)*2))

bar - to make bar graphs
I >> bar(1:10,rand(1,10))

quiver - to add velocity vectors to a plot
I >> [X,Y]=meshgrid(1:10,1:10)
I >> quiver(X,Y,rand(10),rand(10))

stairs - plot piecewise constant functions
I >> stairs(1:10,rand(1,10))

fill - draws and fills a polygon with specified vertices
I >> fill([0 1 0.5],[0 0 1],’r’)

see help on these functions for syntax

doc specgraph - for a complete list

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 33 / 37



TOC

1 Functions

2 Basic programming

3 Line Plots

4 Surface Plots

5 Vectorization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 34 / 37



Vectorization

Vectorization

In MATLAB vectorization is the art of avoiding loops. This makes the
programs execute more efficient!

find is a very important function
I Returns indices of nonzero values
I Can simplify code and help avoid loops

Built-in functions will make it faster to write and execute

In small programs/scripts don’t worry too much about vectorization

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 35 / 37



Example: Avoiding Loops

Given x = sin(linspace(0,10*pi,100)), how many of the entries
are positive?

Inefficient code

count = 0;

for n=1:length(x)

ifx(n)>0

count=count+1;

end

end

Efficient code

count=length(find(x>0));

Vectorization will come natural as you get better in writing code!

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 36 / 37



>> THE END

Øivind K. Kjerstad MATLAB Introduction Course:Lecture 2 3. October 2014 37 / 37


	Functions
	Basic programming
	Line Plots
	Surface Plots
	Vectorization

