
Code rotation

CoPCSE, Oppdal, 2018-11-27
Girts Strazdins, gist@ntnu.no, NTNU (Ålesund)

Task 1,
Implementation A

Task 1,
Implementation B

Task 1,
Implementation C

Three groups work on same programming task...

When they are done, they rotate code...

Task 1 Implementation A
+ Task 2 Implementation B

Task 1 Implementation B
+ Task 2 Implementation C

Task 1 Implementation C
+ Task 2 Implementation A

Tehn they continue the same for the next task...

Resulting code after x steps

• 3 projects, with all x steps implemented

• Every team has worked on each project

• Each project has all three teams as contributors

Motivation (hope)

1. Teams learn from each other

2. Responsibility

3. Realistic setting

4. Side-goal: GIT, level 2+

Trial in "Nettverksprogrammering"

• Programming task: TCP client for a chat, 8 steps

• ~70 students, 1-3 in each team. Data+Automasjon.

• Demo for teacher at the end

• GIT with branch for each step, each team
• Template in Git Classroom

Evaluation

• Qualitative discussion with team during demo

• Questions (approximate):
• How did the project go?

• What was most difficult?

• Did you learn something from code rotation?

• How did you synchronize among teams?

• Are you comfortable with GIT?

Conclusion #1

This approach is good for learning GIT

• Answers for "Are you comfortable with GIT now?"
• Yes (more or less)

• No, but much better than I was before the course

• Few say "don't understand it"
• Most of those failed in OOP course

Conclusion #2

Tasks should be larger and allow improvisation.

Answers for "Did you learn from others' code?":

• It was the same as mine

• Few say: I got surprised by code block X, had to ask

Conclusion #3

Realistic setting and teamwork experience.

• Most worked together

• When asked "was GIT branching hard?" Some
students say "Yes, but we should learn it, because
that is what industry uses".

Conclusion #4

Hard to conclude about responsibility.

• Risk for (unnecessary) peer pressure and criticism?

• Some say: they delayed, I had to work on their part

• The "usual struggle" – assignment was easy for
some, hard for some. Ok for most.

• Almost everyone said: hard to begin, easy at the
end.
• Is that good or bad?

Summarized conclusions

1. Teams learn from each other - unsure

2. Responsibility – not really?

3. Realistic setting - yes

4. Side-goal: GIT, level 2 - yes

Challenge

• What to do with students who:
• Failed OOP?

• Study automation and ask "Why do we need this?"

• Too much on the plate = zero learning?

• Adding GIT, branches, rotation makes it worse?

