
Page 1 of 19

Department of Computer and Information Science

Final Examination in TDT4105 “Information Technology,
Introduction”, with Matlab

Contact during the exam: Rune Sætre Mobile: 452 18103
 Anders Christensen Mobile: 918 97181
 Terje Rydland Mobile: 957 73463
 Benjamin A. Bjørnseth Mobile: 478 32483

Exam date: 2015-12-16
Exam time (from-to): 09:00 – 13:00
Allowed aids: Specified simple calculator

Other information:
The exam contains 4 problems. A percentage score is given to show how much each problem and sub-problem counts
when the exams are graded. Read through all the problems before you start solving them. Be smart and make good use of
your time! If you feel the problems are not fully specified, please write your assumptions explicitly.

Answer briefly and clearly, and write so that the text is easy to read. If the text is ambiguous or longer than necessary,
points will be deducted.

Language: English
Number of pages: 19 (including front-page, forms and appendix)
Contents:

• Problem 1: Multiple Choice Questions (25%)
• Problem 2: Understanding Code (15%)
• Program 3: Programming Travel (20%)
• Problem 4: Programming Evaluation (40%)
• Appendix: Useful functions
• Forms for answering multiple choice questions (2 forms)

Controlled by:

9.des. 2015 Alf Inge Wang

Date Sign

Page 2 of 19

Problem 1: Multiple Choice Questions (25%)
Use the two enclosed forms to solve this exercise (take one home). You can get a new form if you
need it. Only one answer is completely correct. For each question, a correct answer counts 1 point.
Wrong answer or more than one answer counts -1/2 point. No answer counts 0 points. You get no less
than 0 points total for this problem.

1. What does Random Access Memory mean?
a. It is random where the computer stores information.
b. Memory cells can be accessed directly in random order.
c. The memory is located at various random locations at the motherboard.
d. That random errors can occur in parts of the memory.

2. When is photolithography used in the production of computers?
a. When the names of the ports are etched at the back of the computer.
b. Under production of integrated circuits.
c. In the creation of pictures for the user manual.
d. When integrated circuits are fixed to the circuit cards.

3. What is “pipelining”?
a. A term for what happens if too much data is simultaneously written to the hard drive.
b. A technique where data is sent between different parts of the computer in “pipes”.
c. A technique where the CPU can execute several instructions in parallel.
d. A technique that acts as a “secure tunnel” between your computer and a server.

4. What detects all burst errors with length n bits using an n-bit mask, but cannot be used for
cryptography?

a. Simple checksum.
b. HASH-functions.
c. Parity.
d. Cyclic Redundancy Check (CRC).

5. In the TCP/IP protocol…
a. all the packets will follow the same route to the receiver.
b. packet switching is used.
c. nothing is received until the last IP-packet has arrived.
d. there is less interference as smaller pieces are sent separately.

6. What is the binary number 10101010 in decimal?
a. 170
b. 180
c. 190
d. 200

7. Which of the following RGB-codings produces blue?
a. f1faf0
b. 120012
c. 0000ff
d. 884311

Page 3 of 19

8. We have a list of names, such as list = { 'Jo Å', 'Geir Li', 'Ine By' } but with many more
names in practice. The list is not sorted and can contain duplicates (e.g. the same name can be
present at several locations in the list). We shall write a function antall (list, name) which
will return an integer which represents how many times a name is found in the list. We have
the following sketch for the pseudo code:
function antall (list, name):
 amount ← 0
 let n go from first to last element in a list:
 if n == name:
 amount ←amount + 1
 return amount

Question: The run-time complexity to the pseudo code above will be?
a. Θ(n)
b. Θ(n log n)
c. Θ(log n)
d. Θ(n2)

9. For a sorted list we could have used a binary search instead for the loop "let n go… " in the
pseudo code from question 8. An alternative algorithm which first sorts the list, and then uses
binary search for finding the names will have…

a. lower complexity (meaning faster) than the pseudo code given above.
b. higher complexity than the pseudo code above.
c. the same complexity as the pseudo code above.
d. higher complexity if the name can be found zero or one time in the list, and lower if

the name can be found several times.
10. The function antall for an unsorted list as given in question 8, can in Matlab be implemented

by using the built-in functions sum and strcmp, which makes it possible to write the code for
the body of the function in one single line of code. For example
function ant = antall (list, name)
 ant = sum(strcmp(list, name))

Question: What is the run-time complexity of this code?
a. Θ(1)
b. Θ(log n)
c. Θ(n)
d. Θ(n2)

11. What are the benefits of using an SSD instead of an ordinary magnetic hard drive?
a. An SSD increases the memory of the graphics card to produce a smoother execution of

games and similar programs.
b. In an SSD the data is stored in electronic circuits. There are no movable parts, and thus

the disk will be faster and more reliable.
c. It is easier to store permanent data on an SSD.
d. An SSD is not as sensitive to current peaks and thus is more sustainable than a

magnetic disk.
12. What is the motivation for the discipline software engineering?

a. Faster code.
b. Develop software with best quality independent of budget and time.
c. Give the foundation for all software to be developed in specific phases in sequence.
d. Develop software with sufficiently good quality within time and budget.

Page 4 of 19

13. What does modulation describe in e.g. FM and AM?
a. It describes how a signal can be sent over a carrier wave.
b. It describes how to get an overview of the whole Internet.
c. It describes how the power of the electricity can be increase to give more access.
d. It describes how the Internet can be grouped in reasonable parts.

14. If the text string 'Hallo' in ASCII is represented by the following in hexadecimal:
 48 61 6c 6c 6f, how will 'Morna' be represented?

a. 4e 65 69 64 61
b. 4e 54 4e 55 21
c. 4d 6f 72 6e 61
d. 55 66 6g 7h 61

15. An advantage of the waterfall model can be:
a. Easier to deal with instantaneous requirements from customers.
b. Easier for a project manager to follow progress according to a project plan.
c. The system will reflect a gradually better understanding of the user’s needs.
d. Results in faster delivery and shorter time to start using working parts of the system.

16. How many bytes are needed to store a 24-bits picture with 1280x1024 pixels without
compression?

a. Ca. 3,8MB
b. Ca. 1,2MB
c. Ca. 24MB
d. Ca. 24GB

17. What is the first activity in the requirement engineering process according to the textbook?
a. Feasibility Study.
b. Requirements Elicitation and Analysis.
c. Requirements Specification.
d. Requirements Validation.

18. What is an Acceptance Test?
a. Test how different parts of the system will interact?
b. Test that every function in the system works as they should.
c. Test that the operating system accepts the system on the platform.
d. Test with user data to check that the system meets the customers’ needs.

19. Which of the following techniques are lossless compression?
a. Run-length encoding.
b. Analog-to-digital conversion.
c. JPEG-encoding.
d. Check-sum generation.

20. What does Boehm’s spiral model contain, that is not found in the Waterfall model or
incremental development?

a. Risk analysis.
b. Testing/Validation.
c. Requirement specification.
d. Maintenance.

Page 5 of 19

Problem 2 Understanding Code (15%)

Problem 2a (5%)
What is printed to the screen when the function main in the code shown below is executed? (3%)
Explain with one sentence what the function mystery does (2%)

function main()
A='SUNEAILSUN';
B='JALTNCSAES';
D=mystery(A,B);
disp(D);
end

function z = mystery(x,y)

 z='';
 for i = 1:length(x)

 if mod(i,2)
 z(i) = y(i);
 else
 z(i) = x(i);
 end %if

 end %for
end %function

Problem 2b (5%)
What will be returned if the code compute(1) as shown below is executed? (3%)
Explain with one sentence what the function compute does (2%)

function c = compute(x)

 if x<10
 c = x*compute(x*2);

 else
 c = 1;

 end
end %function

Problem 2c (5%)
What will be returned if the code a([2,5,3,8,6,1,7]) as shown below is executed? (3%)
Explain with one sentence what the function a does (2%)

function c = a(c)
 for b=1:length(c)
 d = b ;
 for e=b+1:length(c)
 if c(e)>c(d)
 d = e ;
 end
 end
 f = c(b) ;
 c(b) = c(d) ;
 c(d) = f ;
 end
end

Page 6 of 19

Problem 3 Programming Travel (20%)
Write the functions so they can be reused. You can reuse functions from previous problems even
though you are not able to solve them.

Problem 3a (5%)
Create the function readTime (no input parameters) which asks the user to write in the time using
hour, minute and second separately as shown in the example below. The function should ensure
that the user enters valid time (you can assume the the user enters numbers and not text). It must
give error message for wrong user input and ask the user again to enter hour, minute or second if
they are incorrect. The function shall return a list with three elements [hour, minute, sec].

Example of execution and what is printed to the screen (user input is shown with underlining and
bold text):
>> time = readTime()
Enter hour: 24
- ERROR: Hour must be between 0 and 23!
Enter hour: 12
Enter minute: -5
- ERROR: Minute must be between 0 and 59!
Enter minute: 34
Enter second: 65
- ERROR: Second must be between 0 and 59!
Enter second: 20
time =
 12, 34, 20
>>

Problem 3b (5%)
Create the function convertTime which takes two input parameters time and mode. The
parameter mode can have two values: ’time’ or ’sec’. If mode has the value ‘time’, the function
shall convert time given in seconds to time given as a vector formatted as [hour, min, sec] and
return the vector. If mode has the value ‘sec’, the function shall return number of seconds a vector
in the format [hour, min, sec] corresponds to. The parameter time can both be an integer as well
as a vector of integers depending of the value of mode.

Example of execution:
>> convertTime(3857, 'time')
ans =
 1 4 17
>> time = convertTime(3857,'time')
time =
 1 4 17
>> time = convertTime([1,4,17],'sec')
time =
 3857
>>

Page 7 of 19

Problem 3c (5%)
Create the function travelTime that does not have any input or output. The function will first ask
the user about a start time and then an end time for a travel. The function must ensure that a valid
time will be entered. If the user tries to enter an end time earlier than the start time, the function
shall print the following error message:”- ERROR: Arrival time must be later than Departure
time”, as well as ask the user to enter another end time. The function does not need to take travels
that last after midnight into account. The function shall not return anything, but print the travel
time given in hours, minutes and seconds to screen as shown below.

Example of execution (user input is underlined and bold):
>> travelTime()
Give departure time in hour, minute and second:
Enter hour: 26
- ERROR: Hour must be between 0 and 23!
Enter hour: 15
Enter minute: 20
Enter second: 20
Give arrival time in hour, minute and second:
Enter hour: 13
Enter minute: 15
Enter second: 39
- ERROR: Arrival time must be later than Departure time
Give arrival time in hour, minute and second:
Enter hour: 18
Enter minute: 59
Enter second: 59
Traveltime: 3 hr, 39 min, 39 sec
>>

Problem 3d (5%)
Create the function analyzeBusRoutes which has one input parameter BusTables, which is a
two-dimensional table of integers where each row contains the following: number of bus route,
start time (given by hour and minute), and end time (given by hour and minute). The function will
no return anything, but will print to the screen the number and travel time for the bus route that
takes the longest time, as well as the number and travel time for the bus route that takes the
shortest time as shown in the example of execution below. If there are more than one bus route
with the same travel time, the function shall print the first it finds.

If the function is executed with the following information:

• Bus nr. 1, Start time 15:00, End time: 15:19
• Bus nr. 3, Start time 15:32, End time: 16:45
• Bus nr. 4, Start time 15:45, End time: 16:23
• Bus nr. 5, Start time 15:55, End time: 16:11

the execution will be as follow:
>> busses=[1,15,0,15,19;
 3,15,32,16,45;
 4,15,45,16,23;
 5,15,55,16,11];
>> analyzeBusRoutes(busses)
The slowest bus route is bus nr. 3 and it takes 1 hour, 13 min.
The fastest bus route is bus nr. 5 and it takes 0 hour, 16 min.
>>

Page 8 of 19

Problem 4 Programming Evaluation (40%)
Every year about 2000 students takes the ITGK exam, and a lot of time is used to evaluate and award
grades. Thus, it is decided to program a system that will help doing the job. To ensure that other
universities and courses can use the program, the program must be generalized.
You should create a system to register evaluation of exams. An exam normally consists of four
problems where each counts 25%, 15%, 20% and 40% of the grade. Problem two has three sub-
problems, problem three has four, and problem four has eight sub-problems. The sub-problems are
weighted so each counts an amount percentage of hundred.
Re-use previous sub-problem whenever possible. You can assume that all functions receive valid
arguments (inputs) if nothing else is given.

Problem 4 a) (5%)
Create the start of the main program grades. The start should only contain the constants (variables)
the program needs.
Example on running the program and what it prints to the screen:
>> grades
NTNU_scores =
 89 77 65 53 41 0
NTNU_letters =
 'A' 'B' 'C' 'D' 'E' 'F'
TASKS =
 Columns 1 through 8
 '1' '2a' '2b' '2c' '3a' '3b' '3c' '3d'
 Columns 9 through 16
 '4a' '4b' '4c' '4d' '4e' '4f' '4g' '4h'
WEIGHTS =
 Columns 1 through 12
 25 5 5 5 5 5 5 5 5 5 5 5
 Columns 13 through 16
 5 5 5 5

Page 9 of 19

Problem 4 b) (5%)
Create the function makeArray with two input parameters (numbers and texts), where
numbers is a list of numbers, and texts is a list of characters (both lists have the same length). The
function shall return a CellArray which contains all information from the two input parameters as
shown in the example of execution below:
Example of execution of the function and what it will return (with input from Problem 4a)):
>> limitLetters = makeArray(NTNU_scores, NTNU_letters)
limitLetters =
 [89] 'A'
 [77] 'B'
 [65] 'C'
 [53] 'D'
 [41] 'E'
 [0] 'F'

>> weightTasks = makeArray(WEIGHTS, TASKS)
weightTasks =
 [25] '1'
 [5] '2a'
 [5] '2b'
... Skipping some lines here ... Vi hopper over noen linjer her ...
 [5] '4g'
 [5] '4h'

Problem 4 c) (5%)
A sensor evaluates an exam and assign points to each problem with a score from 0 to 10, where 0 is
the worst (0% score) and 10 is the best (100% score). The evaluation of an exam consists of a vector
with one number for each sub-problem, in the same sequence as they come (e.g. 1,2a,2b, etc.)

Create the function computeScore with the input parameters Points which is a vector with scores for
sub-problems, and the constant WEIGHTS from Problem 4 a). The function shall compute a total
score in percentage for one exam, based on the weighting of the problems.
Example on execution of the function and what it returns:
>> computeScore([10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10], WEIGHTS)
ans =
 100
>> computeScore([10 0 0 0 10 10 10 10 0 0 0 0 0 0 0 0], WEIGHTS)
ans =
 45
>> computeScore([5 0 0 0 10 10 10 10 0 0 0 0 0 0 0 0], WEIGHTS)
ans =
 32.5000
>> computeScore([4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4], WEIGHTS)
ans =
 40

Page 10 of 19

Problem 4 d) (5%)
Write the function score2Letter with two input parameters scoreSum (percent-vice total score for a
candidate from Problem 4 c)) and limitLetters-tabellen from Problem 4b).
The function shall return the highest corresponding letter grade (without rounding). For example, will
40.9 points give F, while 41.0 points will give E.
Example of execution of the function and what it will return:
>> score2letter(88.9, limitLetters)
ans =
B

Problem 4 e) (5%)
Write the function addCandidate which has three input parameters: candidateNumber, Scores (a
list), and the constant WEIGHTS from Problem 4a). The function shall add the following (separated
with tab) as a line at the end of a file with the name 'eksamen.txt':
candidateNumber comes first in the line, then all the part-scores from Scores, and at the end the
percent-vise score with one decimal accuracy and a new line. If the file does not exist, it must be
created. If it cannot be created, the function should end with an error message.
Example of execution of the function and what it returns:
>> addCandidate(12392, [10 0 0 0 10 10 10 10 10 0 0 0 0 0 0 0], WEIGHTS)
>> addCandidate(33322, [0 10 10 10 0 0 0 0 0 10 10 10 10 10 10 10], WEIGHTS)

% Etter at minnepinnen som inneholder filen er fjernet ...
>> addCandidate(12492, [0 10 10 10 0 0 0 0 0 10 10 10 10 10 10 10], WEIGHTS)
Error using addCandidate (line 4)
Kan ikke åpne filen eksamen.txt
>>

% Innholdet i filen eksamen.txt på minnepinnen er nå:
12392 10 0 0 0 10 10 10 10 10 0 ... 0 50.0
33322 0 10 10 10 0 0 0 0 0 10 ... 10 50.0

Page 11 of 19

Problem 4 f) (5%)
Write the function readResultFile with one input parameter filename. The function shall read the
content of the file with the name filename which is formatted as described in Problem 4 e) and put
the content in a two-dimensional table where each row contains a candidate number, all sub-scores,
and the percent-vise score. The candidate number and sub-scores shall be integers, while the percent-
vise score shall be a float number. You are not allowed to use the load-function in Matlab for this
sub-problem. If the file does not exist, the function should be stopped with an error message.

The file eksamen2.txt has the following content where the numbers are separated with tabs
12300 0 10 10 10 0 0 0 0 0 10 10 10 10 10 10 10 50.0
44400 4 4 11 0 0 0 0 0 0 0 0 0 0 0 0 0 19.0
12300 9 0 0 0 10 10 10 10 10 0 0 0 0 0 0 0 47.5

Example of execution with the file “eksamen2.txt”:
>> readResultFile('eksamen2.tekst')
Error using readResultFile (line 4)
Kunne ikke åpne fila
>>
>> readResultFile('eksamen2.txt')
ans =
 Columns 1 through 6
 12300 0 10 10 10 0
 44400 4 4 11 0 0
 12300 9 0 0 0 10
 Columns 7 through 12
 0 0 0 0 10 10
 0 0 0 0 0 0
 10 10 10 10 0 0
 Columns 13 through 18
 10 10 10 10 10 50
 0 0 0 0 0 19
 0 0 0 0 0 47.5
>>

Problem 4 g) (5%)
Write the function checkResultOK with two input parameters filename (the name of the file with
exam results to be checked) and WEIGHTS (from Problem 4a)). The function will read the file and
return true if the following is fulfilled:
- no candidate is listed more than once in the same file
- no one has got less than 0 or more than 10 points on any problem
- the percent-vise score for all candidates is correctly computed as in Problem 4c) above

The function shall print error message if it discovers any errors.

Example of execution of the function that shows what it prints and what is returns:
>> checkResultOK('eksamen.txt', WEIGHTS)
ans =
 1
>> checkResultOK('eksamen2.txt' , WEIGHTS)
ERROR: Candidate 44400 scores are not between 0-10!
ERROR: Candidate 44400 has wrong total score!
ERROR: Candidate 12300 appears more than once!
ans =
 0

Page 12 of 19

Problem 4 h) (5%)
Write the function listAll with the input parameters filename and limitLetters. The function shall
read the results from the file filename formatted as in Problem 4e), and print to screen a list where
every line contains a candidate number with five digits, the percent-vise score with one digit
accuracy, and the corresponding letter grade according to the rules from Problem 4d). The columns
should be adjusted as shown below:
10004 7.4 F
10000 75.4 C
10098 87.4 B
10008 88.1 B
10017 94.9 A
10019 100.0 A

The print-out must be sorted by the increasing percent-vise score. The return value of the function
shall be the number of candidates printed to the screen.

An example of execution of the function, what it prints and what it returns:
>> listAll('eksamen2.txt', limitLetters)
44400 19.0 F
12300 47.5 E
12300 50.0 E
ans =
 3

Page 13 of 19

Appendix: Some useful functions

FIX Round towards zero.

FIX(X) rounds the elements of X to the nearest integers towards zero.

FLOOR Round towards minus infinity.
FLOOR(X) rounds the elements of X to the nearest integers towards minus infinity.

FCLOSE Close file.
ST = FCLOSE(FID) closes the file associated with file identifier FID, which is an integer value
obtained from an earlier call to FOPEN. FCLOSE returns 0 if successful or -1 if not.

FEOF Test for end-of-file.
ST = FEOF(FID) returns 1 if the end-of-file indicator for the file with file identifier FID has
been set, and 0 otherwise.
The end-of-file indicator is set when a read operation on the file associated with the FID
attempts to read past the end of the file.

FGETL Read line from file, discard newline character.
TLINE = FGETL(FID) returns the next line of a file associated with file identifier FID as a
MATLAB string. The line terminator is NOT included. Use FGETS to get the next line with the
line terminator INCLUDED. If just an end-of-file is encountered, -1 is returned.

FIND Returns the linear indexes of non-zero elements in a matrix.
FIND([0 1 0 1 0]) returns [2 4]. If the first parameter has more than one row, a column vector
containing the linear indexes of non-zero elements are returned. An optional second parameter
set the maximum number of indexes to return.

FOPEN Open file.
FID = FOPEN(FILENAME,PERMISSION) opens the file FILENAME in the mode specified
by PERMISSION:
'r' open file for reading
'w' open file for writing; discard existing contents
'a' open or create file for writing; append data to end of file
'r+' open (do not create) file for reading and writing
'w+' open or create file for reading and writing; discard existing contents
'a+' open or create file for reading and writing; append data to end of file

FPRINTF Write formatted data to file.
COUNT = FPRINTF(FID,FORMAT,A,...) formats the data in the real part of array A (and in
any additional array arguments), under control of the specified FORMAT string, and writes it to
the file associated with file identifier FID. COUNT is the number of bytes successfully written.
FID is an integer file identifier obtained from FOPEN. It can also be 1 for standard output (the
screen) or 2 for standard error. If FID is omitted, output goes to the screen.

FORMAT is a string containing ordinary characters and/or C language conversion
specifications. Conversion specifications involve the character %, optional flags, optional width
and precision fields, optional subtype specifier, and conversion characters d, i, o, u, x, X, f, e, E,
g, G, c, and s.

Page 14 of 19

The special formats \n,\r,\t,\b,\f can be used to produce linefeed, carriage return, tab, backspace,
and formfeed characters respectively. Use \\ to produce a backslash character and %% to
produce the percent character.

INPUT Read a value from the keyboard and into a variable
ANSWER=INPUT(STR) prints STR as a prompt, reads a number and assigns it to ANSWER.
If character string are to be read, use the optional second parameter ‘s’.

ISEMPTY - Determine whether array is empty
This MATLAB function returns logical 1 (true) if A is an empty array and logical 0 (false)
otherwise.
TF = isempty(A)

LENGTH The length of vector.
LENGTH(X) returns the length of vector X. It is equivalent to MAX(SIZE(X)) for non-empty
arrays and 0 for empty ones.

LOAD Loads data from filename.
load(filename) loads data from filename.
If filename is a MAT-file, then load(filename) loads variables in the MAT-File into the MATLAB® workspace.
If filename is an ASCII file, then load(filename) creates a double-precision array containing data from the file.

MAX finds the highest element in a vector, or the highest element in each column of a matrix.

MIN finds the lowest element in a vector, or the lowest element in each column of a matrix.

MOD Modulus after division.
MOD(x,y) is x - n.*y where n = floor(x./y) if y ~= 0.

RANDI Pseudorandom integers from a uniform discrete distribution.
R = RANDI(IMAX,N) returns an N-by-N matrix containing pseudorandom integer values
drawn from the discrete uniform distribution on 1:IMAX.
RANDI(IMAX,M,N) or RANDI(IMAX,[M,N]) returns an M-by-N matrix.

REM Remainder after division.
REM(x,y) is x - n.*y where n = fix(x./y) if y ~= 0.

ROUND Rounds to nearest decimal or integer
Y = round(X) rounds each element of X to the nearest integer. If an element is exactly between two integers, the
round function rounds away from zero to the integer with larger magnitude.
Y = round(X,N) rounds to N digits:

SIZE The size of array.

D = SIZE(X), for M-by-N matrix X, returns the two-element row vector
D = [M,N] containing the number of rows and columns in the matrix.

SORTROWS Sort array rows
This MATLAB function sorts the rows of A in ascending order, based on column.
B = sortrows(A)
B = sortrows(A,column)

SQRT Square root.
SQRT(X) is the square root of the elements of X.

Page 15 of 19

SSCANF Extracts values from a string according to a format string. Opposite of FPRINTF.
 A=SSCANF(’12/11-2014’,’%d/%d-%d’) returns a column vector containing the values
 12, 11, and 2014.

STRSPLIT Splits the first (string) parameter into a cell array of substrings, according to the delimiter
string given as the second parameter. STRSPLIT('one, two, three', ', ') results in {'one', 'two',
'three'}. Multiple alternative delimiters can be specified using a cell array as the second
parameter.

STRTOK separates the first token of a string from the rest of that string.
 [TOKEN, REST]=STRTOK(‘ first second’, DELIM) sets TOKEN to ‘first’ and REST to ‘
second’. The optional parameter DELIM contains a list of delimiter characters – where the
space character is default. Any delimiter characters before the first token are ignored.

STR2NUM Convert string matrix to numeric array.
X = STR2NUM(S) converts a character array representation of a matrix of numbers to a
numeric matrix. For example, S=['12'; '34'] str2num(S) => [12; 34]

SUM The sum of elements.
S = SUM(X) is the sum of the elements of the vector X. If X is a matrix, S is a row vector with
the sum over each column.

Page 16 of 19

This page is on purpose empty!

Page 17 of 19

Answer form for Multiple Choice Questions

Candidate number: Program:

Course code: Date:

Total no of pages: Page:

 Problem A B C D

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Page 18 of 19

This page is on purpose empty!

Page 19 of 19

Answer Form for Multiple Choice Questions

Candidate number: Program:

Course code: Date:

Total no of pages: Page:

 Problem A B C D
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

	Language: English
	Number of pages: 19 (including front-page, forms and appendix)
	Problem 4 Programming Evaluation (40%)
	Problem 4 a) (5%)
	Problem 4 b) (5%)
	Problem 4 c) (5%)
	Problem 4 d) (5%)
	Problem 4 e) (5%)
	Problem 4 f) (5%)
	Problem 4 g) (5%)
	Problem 4 h) (5%)

	Answer form for Multiple Choice Questions
	Answer Form for Multiple Choice Questions

