
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324891822

Interdisciplinary Project Report - Organization and Development of the

Mission Operations System for the MOVE-II CubeSat

Technical Report · March 2018

DOI: 10.13140/RG.2.2.35355.36646

CITATIONS

0
READS

50

1 author:

Some of the authors of this publication are also working on these related projects:

MOVE-II View project

Alexander Lill

Technische Universität München

5 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Alexander Lill on 02 May 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/324891822_Interdisciplinary_Project_Report_-_Organization_and_Development_of_the_Mission_Operations_System_for_the_MOVE-II_CubeSat?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/324891822_Interdisciplinary_Project_Report_-_Organization_and_Development_of_the_Mission_Operations_System_for_the_MOVE-II_CubeSat?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MOVE-II?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3d4703873359d1cb0d62bc951b22b413-XXX&enrichSource=Y292ZXJQYWdlOzMyNDg5MTgyMjtBUzo2MjE4MTE2OTE3MDQzMjJAMTUyNTI2Mjg2ODk1OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Chair of Astronautics
Prof. Prof. h.c. Dr. Dr. h.c.
Ulrich Walter

Interdisciplinary Project
Organization and Development of the Mission Operations

System for the MOVE-II CubeSat

RT-IDP 2016/05
Author:

Alexander Lill

Supervisor: Dipl.-Ing. Martin Langer
Chair of Astronautics
Technische Universität München



Organization and Development of the Mission Operations System for the
MOVE-II CubeSat

Alexander Lill

Zusammenfassung

Dieser Bericht beschreibt meine Aktivitäten während meines Interdisziplinären Projekts
(IDPs) am Lehrstuhl für Raumfahrttechnik an der Fakultät für Maschinenwesen der
Technischen Universität München.

Während meines IDPs arbeitete ich am Operations System, welches für den Missi-
onsbetrieb des CubeSats MOVE-II verwendet wird. Zu meinen Aufgaben gehörte die
Gründung des Operations Teams, die Sammlung von Anforderungen für das zu entwi-
ckelnde System, die Erstellung von Skizzen der Benutzeroberfläche und die Definiti-
on der gesamten Softwarearchitektur. Gleichzeitig übernahm ich die Koordination der
Entwicklung des Systems und die Organisation des Teams. Mit einer Beschreibung der
finalen Softwarearchitektur beende ich diesen Teil meines IDPs.

Zusätzlich zur Entwicklung des Operations Systems entwickelte ich ein Tool zur halb-
automatischen Erfassung von Fehler-Reports namens “Elfriede”. Dieser Bericht be-
schreibt die aufgetretenen Probleme in unserem Projekt und wie diese beseitigt wer-
den konnten. Dieser Teil meines IDPs endet mit einer Erläuterung der Implementierung
von “Elfriede”.

Page I



Organization and Development of the Mission Operations System for the
MOVE-II CubeSat

Alexander Lill

Abstract

This report describes my activities during my Interdisciplinary Project (IDP) at the Chair
of Astronautics at the Department of Mechanical Engineering, Technical University of
Munich (TUM).

During my IDP I worked on the Operations System that will be used during Mission
Operations of the CubeSat MOVE-II. My work included founding the new Operations
Team, the collection of requirements for the system that shall be developed, the cre-
ation of Mock-Ups for the user interface and the definition of the overall software archi-
tecture. In parallel to that I coordinated all development efforts and organized the team.
This part of my IDP concludes with the description of the final software architecture of
the Operations System.

Furthermore I developed a semi-automated bug-tracking tool called “Elfriede”. This
report provides a problem statement describing the issues we experience in our project
as well as the solution that was found. This part concludes with a description of the
implementation of “Elfriede”.

Page II



Organization and Development of the Mission Operations System for the
MOVE-II CubeSat

Alexander Lill

Contents

1 INTRODUCTION 1

2 MOVE-II OPERATIONS SYSTEM SOFTWARE 4

2.1 Timeline 4

2.2 Founding of the Operations Team 5

2.3 Collection of Requirements 7

2.4 Creation of Mock-Ups 10

2.5 Draft of the Architecture 10

2.6 Development Process 12
2.6.1 Artifacts 12
2.6.2 Events 13
2.6.3 Roles 14

2.7 Operations System Software Architecture 14

3 SEMI-AUTOMATED BUG-TRACKING WITH ELFRIEDE 20

3.1 Problem Statement 20

3.2 Solution 21

3.3 Implementation 21
3.3.1 General Concept 22
3.3.2 Task Handlers 22
3.3.3 File Handler 23

3.4 Results 24

4 CONCLUSION 25

Page III



Organization and Development of the Mission Operations System for the
MOVE-II CubeSat

Alexander Lill

List of Figures
Fig. 1–1: The Munich Orbital Verification Experiment II (MOVE-II) Satellite 1
Fig. 1–2: System of Systems 2

Fig. 2–1: Operations (OPS) Team Members 5
Fig. 2–2: First Project Plan 6
Fig. 2–3: First Mock-Ups 11
Fig. 2–4: Digital Mock-Ups 11
Fig. 2–5: OPS Software Architecture 15
Fig. 2–6: OPS Microservices 15
Fig. 2–7: Communication Components 17
Fig. 2–8: Housekeeping Processor 18
Fig. 2–9: Clients using the REpresentational State Transfer (REST) Interface 18

Fig. 3–1: Task Handler Workflow 22
Fig. 3–2: Task Handler Example 23
Fig. 3–3: File Handler Example 24

Page IV



Organization and Development of the Mission Operations System for the
MOVE-II CubeSat

Alexander Lill

Acronyms
ADCS Attitude Determination and Control System

API Application Programming Interface

AUTH Authentication

BPO Beacon Poster

BPR Beacon Processor

CDH Command and Data Handling

CMD Commanding

COM Communication

DLR Deutsches Zentrum für Luft- und Raumfahrt

EPS Electrical Power System

ESPACE Earth Oriented Space Science and Technology

HK Housekeeping

HORST Humble On-board Reconfiguration State Transformer

HPR Housekeeping Processor

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDP Interdisciplinary Project

JSON JavaScript Object Notation

LRT Lehrstuhl für Raumfahrtechnik

MOVE-II Munich Orbital Verification Experiment II

NOTS Notification Service

OAuth2 Open Authorization 2

OPS Operations

PL Payload

Page V



Organization and Development of the Mission Operations System for the
MOVE-II CubeSat

Alexander Lill

REST REpresentational State Transfer

STATS Statistics Service

STR Structure

TCP Transmission Control Protocol

THM Thermal

TUM Technische Universität München

WARR Wissenschaftliche Arbeitsgemeinschaft für Raketentechnik und Raumfahrt

Page VI



Chapter 1. Introduction

1 Introduction

The Scientific Workgroup for Rocketry and Spaceflight 1 (Wissenschaftliche Arbeits-
gemeinschaft für Raketentechnik und Raumfahrt (WARR)) is a student organization
at the Technische Universität München (TUM) Department of Mechanical Engineering
and located at the Chair of Astronautics (Lehrstuhl für Raumfahrtechnik (LRT)).

This scientific workgroup is concerned with satellite technology, space elevators, au-
tonomous rovers and of course rocketry and is also known for its Hyperloop2 team.

One of the biggest groups of students is part of the satellite technology project MOVE
(the Munich Orbital Verification Experiment). The current mission is MOVE-II, a one
unit CubeSat with dimensions of 10x10x10cm and a maximum weight of 1.33kg. It is
the second satellite of the TUM and the follow-up project of First-MOVE.

Fig. 1–1: MOVE-II Satellite.

Figure 1–1 shows the MOVE-II CubeSat. The MOVE-II mission has the following goals:

• Build a reusable satellite bus

• Test our payload, prototypes of new solar cells

• Educate students about how to build satellites

• Train students in how to operate satellites

The satellite is developed in cooperation with the LRT and the WARR and is partly
funded by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt
(DLR)).

1http://www.warr.de
2http://hyperloop.warr.de/

Page 1

http://www.warr.de
http://hyperloop.warr.de/


Chapter 1. Introduction

The MOVE-II project can be defined as a system of systems as shown in Figure 1–2
with the following parts:

Fig. 1–2: System of Systems.

Satellite System The Satellite System consists of hardware and software from the
respective subsystems:

• Structure (STR): Provides the surrounding structure for all other subsystems
including the deployable solar panels and the deployment mechanism.

• Electrical Power System (EPS): Stores and distributes the power for all other
subsystems.

• Communication (COM): Enables communication between the satellite and
the ground station.

• Command and Data Handling (CDH): Handles commands from the ground
station and stores all data generated on the satellite.

• Attitude Determination and Control System (ADCS): Allows to control the
satellite’s attitude.

• Payload (PL): Provides the means to determine the performance of new so-
lar cells.

• Thermal (THM): Measures the thermal attributes of the satellite.

Ground Station System The Ground Station System consists of the hardware re-
quired for receiving and transmitting signals from and to the satellite and all nec-
essary hardware and software to decode and encode these signals.

Page 2



Chapter 1. Introduction

Operations System The Operations System consists of all the hardware and software
necessary for analyzing the satellite’s data and controlling the satellite and will be
explained in more detail in the following chapter.

Bug Tracking The Bug Tracking component is a separate software that is used to
keep track of issues with the Satellite, Ground Station and Operations System.

Source Code & Artifacts The Source Code & Artifacts component is a separate soft-
ware that is used to store and version all source code and provide all necessary
artifacts for the other systems.

Team Communication The Team Communication component is a separate software
that is used to enable real-time communication between team members and
groups of team members and will be explained in more detail in chapter 3 “Semi-
Automated Bug-Tracking with Elfriede”.

Log Handling The Log Handling component stores all the logs generated by software
running in the Ground Station and Operations System.

One of the main parts of my Interdisciplinary Project at the LRT was the definition of
the overall software architecture and all involved components in the Operations Sys-
tem and the development of these components (see chapter 2). I additionally worked
on parts of the other systems. One of these other tasks included the creation of the
semi-automated bug-tracking tool “Elfriede” (see chapter 3). This report ends with a
conclusion of my now almost two years of interdisciplinary work at the Chair of Astro-
nautics in chapter 4.

Page 3



Chapter 2. MOVE-II Operations System Software

2 MOVE-II Operations System Software

The Operations System is an important and complex part of the whole mission. Many
different functionalities have to be implemented, and many different interfaces have
to be covered. As it is not feasible to deal with this alone the Operations team was
founded. This new team had the tasks to collect the high level requirements for this sys-
tem and create mock-ups of the user interface. Furthermore the software architecture
had to be defined and successively implemented. The resulting software architecture
is explained in more detail in the last section of this chapter.

2.1 Timeline
• 2016-05-04: Joined the MOVE-II COM subsystem to work on custom ground

station software

• 2016-10-24: First meetings regarding the new Operations subsystem

• 2016-11-02: Founding of the OPS subsystem

• 2016-11: Creation of the first requirements for OPS

• 2016-12: Creation of the first mock-ups, first drafts of the architecture

• 2017-01: Start of the implementation of the first microservice (Logbook)

• 2017-02: Start of the implementation of the user interface and the second mi-
croservice (EPS)

• 2017-03: Start of the implementation of the third, fourth and fifth microservice
(PL, THM, CDH) and the Housekeeping Processor (HPR)

• 2017-04: Start of the implementation of the beacon processor

• 2017-05: First usage of the Operations System for the Thermal Vacuum Chamber
Tests, sixth and seventh microservice (ADCS, COM)

• 2017-08: Start of the implementation of the health microservice and notification
service

• 2017-10: Start of the implementation of the authentication microservice and
statistics service

• 2018-01: Start of the implementation of the Housekeeping (HK) microservice

Page 4



Chapter 2. MOVE-II Operations System Software

2.2 Founding of the Operations Team
New team members for the OPS team had to be found. For this the primary source was
a quick introduction of the MOVE-II project in the microprocessors lecture and a Kickoff
Event organized for the whole MOVE-II project. A weekly meeting was introduced right
from the beginning. As many of the newly acquired team members were studying
in the international Master’s Program Earth Oriented Space Science and Technology
(ESPACE) lots of meetings took place at the main campus to reduce overall traveling
time of the team members.

The composition of the OPS team over time is shown in Figure 2–1. It shows how
many members the OPS team had (gray line) and if they were classified as developers
(blue) or non-developers (orange). It is clearly visible that the number of developers
increased after the initial collection of requirements and creation of the mock-ups.

Fig. 2–1: OPS Team Members.

In this phase a first project plan for the new OPS team (see Figure 2–2) was created.
This plan gave a first outline of the necessary steps to take and was then successively
executed more or less as planned.

Page 5



Chapter 2. MOVE-II Operations System Software

Fig. 2–2: First Project Plan.

Page 6



Chapter 2. MOVE-II Operations System Software

2.3 Collection of Requirements
There are about 170 Requirements defined for the MOVE-II mission. These require-
ments describe the goals of the mission and which functionalities the different subsys-
tems have to provide for this mission. The requirements in Table 2–1 are a selection of
our real requirements.

Unfortunately no requirements were available for the OPS subsystem. This resulted
in not knowing which goals the OPS subsystem has to reach and which functionalities
shall be provided. Therefore this lack of requirements had to be resolved by carefully
defining what the OPS subsystem should enable operators to do with the MOVE-II
satellite.

In order to obtain the requirements for the OPS subsystem the requirements for all
other subsystems were analyzed and used to deduce the new requirements. As
all members of the OPS subsystem including myself were not that experienced with
spacecraft operations and therefore biased by traditional operations concepts this led
to many requirements that were very basic, but at times also quite innovative for this in-
dustry. These requirements often resulted in questions for the respective subsystems
that had to be clarified, e.g. if certain data is available, or how data and workflows
actually look like.

Table 2–2 shows examples of deduced requirements.

Page 7



Chapter 2. MOVE-II Operations System Software

Tab. 2–1: Selection of requirements for the MOVE-II CubeSat

ID Requirement Rationale

STEX-
DLR-01

MOVE-II shall be a One Unit
(1U) CubeSat according to the
CubeSat Design Specification
(CDS).

Since the Multi-Purpose Active-
Target Particle Telescope was
removed from the design due to
insufficient funding by the DLR,
MOVE-II is further expected to
be a 1U CubeSat.

STEX-
LRT-01

MOVE-II shall be designed as a
1U satellite payload platform for
future missions.

MOVE-II serves the purpose of
proving that the satellite system
provides all necessary capabili-
ties for future payload missions.
With the MOVE-II mission, flight
heritage on this system is gath-
ered. The system will be reused
as satellite bus for future mis-
sions. This will save time and
effort then, plus provide the fu-
ture engineering team with the
reliability of a completely tested
satellite bus system.

SYS-01 The MOVE-II satellite shall oper-
ate for at least 6 months.

MOVE-II shall be a bus system
adaptable to different future pay-
loads. Therefore a minimum
runtime of half a year is rea-
sonable. In case of the actual
MOVE-II payload, the duration of
six months is mandatory to eval-
uate the degradation of the solar
cells.

CDH-07.1 The CDH shall be able to be re-
programmed in off-nominal be-
havior in orbit.

This gives us the possibility to
correct mistakes or reload the
image in case it is broken.

Page 8



Chapter 2. MOVE-II Operations System Software

Tab. 2–2: Deduced User Stories for the Operations System

Requirement I want . . . So that . . .

The project duration
shall be three years,
including six months
of operations.

to have the system
uptime viewable from
the groundstation

we know how many
hours it has been run-
ning since the last re-
boot

to see the number of
days or hours since
the mission started

I can see how long
the mission has been
going on

All subsystems
should provide
telemetry.

to see important val-
ues for each subsys-
tem (e.g. tempera-
ture)

i can check if they are
in their defined and
allowed ranges

to be able to set min-
imum and maximum
values for all parame-
ters

I can automate the
coloring and warn-
ings for all telemetry

The CDH shall be
able to command the
satellite in all nominal
operation modes,
and provide safehold
and data collecting
measures in case of
off-nominal behavior.

I want to see the
current mode of
the satellite (e.g.
safemode / normal)

I see on one glance
what is going on

I want to have the
ground station auto-
matically log sepa-
rately data in case
of non nominal be-
haviour

easier debugging can
be done afterwards

to have automatic
sample rate adjust-
ment for non nominal
mode

have more detailed
data

to be notified in case
of abnormal behav-
ior, e.g. Slack, Mail,
SMS

so that I can start
preparing the next
overpass

Page 9



Chapter 2. MOVE-II Operations System Software

These requirements (phrased as User Stories, concrete statements that state what
a possible user with a certain role wants from the software, and what he hopes to
accomplish with this) were then split into different groups. These groups represent
either general user stories (that should be implemented by all parts of the software)
or for certain areas of the software, e.g. for a screen that is aimed for operators of a
certain subsystem, for administrative users or for events like the launch of our satellite.

2.4 Creation of Mock-Ups
After the creation of requirements as User Stories the team started with creating mock-
ups of the user interface.

The idea behind this was to:

• have the team think more about the User Stories and how they could be imple-
mented

• improve the User Stories with the knowledge gained from drafting the user inter-
face

• get feedback from the other subsystems by showing them the mock-ups and
improving them together with the future users of the interface (instead of just
showing them text and asking them if they have any feedback)

• be able to create first prototypes and test them by using mocked screens that we
imagined for the mission control center. Knowing which computers, monitors and
projectors will be available we also created a preliminary purpose for all of them

The first mock-ups were created in groups using pen and paper. In Figure 2–3 one of
the many manual drafts of, in this case, the EPS data visualization can be seen.

Afterwards these mock-ups were digitized as vector graphics using the collaborative
online sketching tool ”Figma”1 to be able to have a more real representation of the
future user interface (see Figure 2–4).

2.5 Draft of the Architecture
After it became more and more clear which functionalities the Operations System will
have to provide the first draft of a software architecture was created.

As the Operations System has to cover a large spectrum of use cases the complexity
of the overall system is quite high. To handle this complexity many best practices and
software engineering principles were kept in mind during the draft of the architecture.

The software was modularized at the system level, strictly following a microservice ar-
chitecture. Therefore the system consists of many different microservices that provide
only one single function, taken from the Unix philosophy “Do one thing and do it well”.
One example for this is the Thermal (THM) microservice, that stores all temperature
data and allows to query this data. The microservice architecture makes the software

1 https://www.figma.com

Page 10

https://www.figma.com


Chapter 2. MOVE-II Operations System Software

Fig. 2–3: First Mock-Ups.

Fig. 2–4: Digital Mock-Ups.

Page 11



Chapter 2. MOVE-II Operations System Software

components easier to understand, develop and test and furthermore simplifies contin-
uous deployment through the low coupling between microservices.

For further details about the architecture of the Operations System please refer to the
Interdisciplinary Project Report of Alexandru Obada, Chapter 3.

2.6 Development Process
The development process of the Operations System is based on agile software devel-
opment methodologies and was largely inspired by Scrum. For our development efforts
we took the Scrum development process as an inspiration and adjusted it to our needs.
This was necessary due to the following reasons:

• All members of the OPS team are students and not working for the project full
time. Many of the members work for the MOVE-II project voluntarily or as part
of an . This leads to less weekly working hours than for full-time developers and
makes physical daily meetings basically impossible.

• The Scrum process often defines the developers as professionals with many
years of practical experience and teamwork. As MOVE-II is a student project
many members do not have much practical experience or have never worked in
such a big team.

• Due to the scarcity of resources it was not possible to map every role of the Scrum
process to a separate person.

The Scrum development process consists of artifacts created and used in the process,
events that define the process and roles that participants of the process have.

The following paragraphs will briefly describe the most important parts of Scrum and
provide a summary of the adjustments we applied. For further information about the
standard Scrum process please refer to more detailed descriptions e.g. on the website
ScrumAlliance.org 2.

2.6.1 Artifacts

Product Backlog The Product Backlog is an ordered list of everything known to be
needed for the product. This list contains all User Stories that were imagined for
the product. This list is ordered from the highest priority to the lowest priority.

Sprint Backlog The Sprint Backlog is a subset of the User Stories contained in the
Product Backlog. These User Stories were selected to be implemented in the
current Sprint. All the contained User Stories were estimated regarding their
effort by the team before the Sprint starts.

Product Increment A product increment is a new version of the developed product
that was improved since the last version. These improvements might be new
features, fixed bugs or improved performance, reliability and so on.

2https://www.scrumalliance.org/why-scrum/scrum-guide

Page 12

https://www.scrumalliance.org/why-scrum/scrum-guide


Chapter 2. MOVE-II Operations System Software

2.6.2 Events

The Sprint The Sprint is a time-box of a certain length that is used to split the Scrum
process into phases. Sprints normally have consistent durations during a project
and per definition end in a potentially shippable product increment. The Sprint
Backlog is normally not changed during a Sprint to avoid disturbances like fre-
quently changed user stories or requirements from the team.

Adjustments: The duration of a Sprint is generally set to a length of two to four
weeks. In our environment the duration was shortened to one week. Experience
shows that for longer Sprints work was only done in the few days before the Sprint
ends, and that the amount of finished work can be increased by focusing more
on short-term goals that can be reached during shorter sessions of a few hours,
for example in the evenings or the weekends.

Sprint Planning At the end of every Sprint (and before the beginning of the next
Sprint) the team collaboratively decides on the User Stories from the Product
Backlog that should be part of the next Sprint Backlog. In the Sprint Planning the
goals for the next Product Increment are set and the effort to fulfill these goals is
estimated.

Adjustments: The estimation of tasks was not formalized as normally done in
the Scrum process (e.g. via Planning Poker, where the whole team estimates
all tasks together), but was done more briefly during the Sprint Planning event
to reduce meeting time. The tasks were mostly estimated by the team leader
and the estimate was confirmed by the rest of the team. Raised objections were
discussed in more detail and estimations consecutively adjusted.

Daily Scrum Daily Scrum describes the daily meeting of the development team to
quickly discuss their progress since the day before, what they are planning to do
until tomorrow, and which impediments they currently see in getting their work
done. It is normally very short (up to 15 minutes) and should take place at the
same time and location every day.

Adjustments: Daily meetings were completely removed from the process due
to the voluntary nature of the project and the fact that there were rarely times
where all team members were free for a physical meeting. In the beginning of
the project daily virtual meetings were tried out. Here each team member was
asked to provide the following information via our team communication tool Slack :
“What has been done the day before?”, “What is planned to be done today?”
and “Which impediments are there?”. Experience shows that the voluntary team
members rarely work on the project every day, but rather in specific time frames
like for example weekends or on some evenings every week. Therefore the daily
meetings were changed to an on-demand approach, most often implemented by
chat messages on Slack.

Sprint Review The Sprint Review is held at the end of every Sprint to inspect the
latest Product Increment and update the Product Backlog if necessary.

Page 13



Chapter 2. MOVE-II Operations System Software

Sprint Retrospective The Sprint Retrospective is an event where the team reflects on
the past Sprint and analyzes its own work to deduce what went well and in which
areas there might be potential for improvement. Using this information a plan is
created how these lessons learned can be implemented.

2.6.3 Roles

Product Owner The Product Owner is responsible for the Product Backlog. User Sto-
ries need to be clearly defined and ordered by priority according to the Product
Owner’s vision of the product. The Product Owner is accountable for the delivered
product.

Adjustments: See Scrum Master

Scrum Master The Scrum Master’s responsibility is to make sure that the Scrum pro-
cess is followed and that all rules, practices and values of the process are under-
stood. The Scrum Master is a servant-leader to the Product Owner and the team
of developers and also tries to remove impediments to the team’s progress.

Adjustments: Due to the limited number of available persons in the project the
same person occupied the roles of Product Owner and Scrum Master. Here my
role as Team Leader was extended to not only prioritize the User Stories in the
Product Backlog and ensure proper understanding of these items, but also to re-
move impediments from my team and ensure that the agile software development
approach is understood. This also included the coordination and communication
with the other team members from the other subsystems and hopefully allowed
my team members to focus on their development activities.

Developer The Developers implement the different User Stories that are contained
in the Sprint Backlog. The developers are encouraged to organize and manage
their own work.

2.7 Operations System Software Architecture
After almost a year of iterative development of the Operations System the software
architecture is now stable and will probably not change much anymore. Figure 2–5
shows the current architecture and will be explained in the subsequent paragraphs.

As mentioned in the chapter “Draft of the Architecture” the Operations System follows
a microservice architecture. Figure 2–5 shows all the different components of the
Operations System which will be consecutively explained in the following paragraphs.

Figure 2–6 shows all microservices, that store and retrieve data from the database.

Page 14



Chapter 2. MOVE-II Operations System Software

Fig. 2–5: OPS Software Architecture.

Fig. 2–6: OPS Microservices.

Page 15



Chapter 2. MOVE-II Operations System Software

First of all you can see that every subsystem has its own microservice.

• The Thermal (THM) Microservice handles all temperatures that are received from
the satellite, and stores them into its own table in the database.

• The Electrical Power System (EPS) microservice handles all current, voltages
and other telemetry data received from the satellite that is concerned with the
EPS subsystem on board of the satellite.

• The same is true for all microservices in the upper half of the light blue box.

• The responsibility of the Commanding (CMD) microservice is to handle all com-
manding that we can do with our satellite. This includes for example sending
commands and receiving their results or up- and downloading files.

• The Humble On-board Reconfiguration State Transformer (HORST) microservice
handles all data that is generated by HORST on the satellite, and is separated
from the CDH microservices to increase the performance of this important data
source.

• The Logbook microservice handles all downloaded journald logs and allows to
manage alerts. These alerts can be compared to Redmine tickets and can be
used to track anomalies of the Satellite System.

• The HK microservice handles imports of downloaded housekeeping files.

• The Health microservice handles all health data generated by all the other mi-
croservices, stores them into the database and allows to query this information.

• The Authentication (AUTH) microservice regulates the access to all the microservies
and ensures that only authenticated users can retrieve and store data from / to
the Operations System using the Open Authorization 2 (OAuth2) protocol.

• All microservies provide an interface for storing and retrieving data using the
REST technology that is built upon simple Hypertext Transfer Protocol (HTTP)
methods. More information regarding this topic can be found in the Interdisci-
plinary Project (IDP) report of Thomas Zwickl.

• For communication that should take place asynchronously, for example using
queues and load sharing algorithms, we use the open-source messaging broker
rabbitMQ. More information regarding this topic can be found in the IDP reports
of Alexandru Obada, Cristian Soare and Constantin Costescu.

All components that handle communication from and to the satellite are shown in Fig-
ure 2–7. These components are connected to the ground station and receive data from
there after being decoded (coming from the satellite) or can send data there (which will
be sent to the satellite after being encoded).

• The Beacon Processor (BPR) parses the raw Beacon Information which is re-
ceived as an array of bytes. It is then interpreted and sent in an intermediary
representation to the Beacon Poster (BPO) using rabbitMQ. The Beacon Poster
transforms the received data into the widely used JavaScript Object Notation

Page 16



Chapter 2. MOVE-II Operations System Software

Fig. 2–7: Communication Components.

(JSON) format and sends this to the different microservices using the Hypertext
Transfer Protocol Secure (HTTPS) REST interface. More information regarding
the parsing and posting can be found in the IDP report of Constantin Costescu.

• The different RESQ boxes talk to their respective counterparts on the satellite.
The RESQ components allow to send commands to the satellite and retrieve
their results or up- and download files. These components directly talk to the
ground station via Transmission Control Protocol (TCP) sockets on the one side,
and the Commanding (CMD) microservice on the other side via rabbitMQ.

In Figure 2–8 you can see the HPR. The HPR receives requests via rabbitMQ from
the HK microservice to import housekeeping files. These files have to be downloaded
from the satellite before. The HPR then sends back progress updates using rabbitMQ
while, at the same time, transmitting the parsed data to the respective microservices
using the HTTPS REST interface.

Page 17



Chapter 2. MOVE-II Operations System Software

Fig. 2–8: Housekeeping Processor.

Fig. 2–9: Clients using the REST Interface.

Figure 2–9 shows all clients that use the provided REST interface.

• The Notification Service (NOTS) queries the microservices for metadata about
every sensor on the satellite to determine e.g. maximum temperatures or other
conditions that we want notifications for. After this metadata is obtained the Noti-
fication Service listens for all beacons parsed by the BPR. This service can now
notify us about any values that are not as expected (not nominal) and, for exam-
ple, post messages in a configured Slack channel.

Page 18



Chapter 2. MOVE-II Operations System Software

• The Statistics Service (STATS) queries different Application Programming Inter-
faces (APIs) to provide us with daily statistics about the usage of our Operations
and Satellite Systems. This includes e.g. the number of user logins for the OPS
web page, the number of executed commands, successful commands, and exe-
cuted and successful file transfers.

• The Frontend represents the OPS web page that developers as well as operators
use to visualize all available data received from the satellite and command the
satellite. It uses the HTTPS REST interface as well as websockets to get data
from the microservices. The use of websockets (permanent connections of the
client to the OPS servers) allow to automatically receive new data from the satel-
lite in the users browser window once it is available. More information about this
topic can be found in the IDP report of Thomas Zwickl.

Page 19



Chapter 3. Semi-Automated Bug-Tracking with Elfriede

3 Semi-Automated Bug-Tracking with Elfriede

Elfriede is a Slack bot (an application connecting to the messaging platform Slack)
that automates certain processes. The following paragraphs define the problems that
Elfriede solves, and explain how these problems have been addressed.

3.1 Problem Statement
It is well known that communication effort grows more and more the higher the number
of participants gets. Our MOVE-II CubeSat project reached a size of about 100 active
members at the beginning of 2017.

We used Slack as our main communication platform for the following purposes:

• Announcements to the whole team

• Coordination between sub-teams

• Coordination of the sub-teams

• Coordination of scarce resources (hardware, tools, rooms)

• Troubleshooting of problems

• Questions and Answers from and by anyone

Slack is an application that can be used via the browser or a separate application avail-
able on the Slack website or the different application stores (e.g. Google Play Store). It
allows communication in different channels (chat rooms) and private messages. Mes-
sages can be used as a topic for a longer discussion associated to the original message
(thread). For further information please visit the official Website: What is Slack?1

In addition to Slack the project management software Redmine was used for issue
tracking, e.g. tracking and documenting bugs in hardware or software, missing docu-
mentation or features that still have to be implemented.

Most of the time issues and questions are discussed on Slack. Here team members
can be directly addressed and asked for information, e.g. if something is expected be-
havior, how some task can be accomplished or how the current behavior of hardware
or software can be explained. These questions often originate from missing documen-
tation or faults in hardware or software.

The follow-up and mitigation or documentation of these faults is crucial for the success
of our project. Everybody was therefore asked to create new issues in our issue tracker
whenever something worth tracking is observed.

Due to the missing integration between Slack and Redmine this always was not effort-
less:

1https://get.slack.help/hc/en-us/articles/115004071768-What-is-Slack-

Page 20

https://get.slack.help/hc/en-us/articles/115004071768-What-is-Slack-
https://get.slack.help/hc/en-us/articles/115004071768-What-is-Slack-


Chapter 3. Semi-Automated Bug-Tracking with Elfriede

• The Slack environment has to be left (new browser tab or new application win-
dow) and therefore the context has to be changed

• User credentials have to be provided for login

• The issue has to be created, including

– Title

– Description

– Assignee

• The link to the created issue has to be posted in Slack to enable others to follow-
up on the issue

This led to the problem that many issues were never tracked and therefore forgotten
or not followed up. While assigning people with the dedicated task of finding and doc-
umenting these issues improved the situation partially it did not lead to the expected
results and there were still discussions, problems and solutions that never were tracked
and documented.

3.2 Solution
To mitigate the aforementioned problems regarding the different used tools some so-
lutions to bridge this gap were evaluated. This included the different integrations pro-
vided by the Slack platform for Trello and Redmine, the integrations provided by the
Trello platform and the well-known platform Zapier. All these tools did not provide all
the necessary functionality that would allow to automate our custom process.

Therefore a custom solution needed to be implemented. The goal of this solution was
to seamlessly integrate our issue tracker into our Slack communication.

For this purpose a bug tracking workflow was introduced: Whenever something worth
tracking is written a “bug” emoji shall be added as a reaction to this message. As soon
as this message was then automatically transferred into our issue tracker a “check-
mark” emoji is added as a reaction to this message to signalize that this issue was
permanently and successfully tracked, or a “no entry sign” if an error occurred.

This workflow is visualized in Figure 3–1.

This was then implemented as an application that observes our Slack for new bug
reactions and creates issues for them accordingly.

3.3 Implementation
The Slack bot was implemented using the Python programming language. This was
due to the good availability and documentation of already existing packages that allow
receiving notifications about new reactions and messages and writing messages on
Slack.

Page 21



Chapter 3. Semi-Automated Bug-Tracking with Elfriede

Fig. 3–1: Task Handler Workflow.

3.3.1 General Concept

The application is able to receive any events defined in the Events API2.

For these events handlers can be programmed and then assigned to certain events
via a configuration file. These event handlers execute arbitrary code for every received
event and give a high flexibility to extend the existing application with additional func-
tionality.

Currently the following handlers are implemented:

• Task Handlers

• File Handler

3.3.2 Task Handlers

The task handlers handle all functionality regarding tasks (called “Issues” in Redmine).
Currently there are 2 task handlers implemented, one for Redmine issues, and one for
Trello cards. The functionality of all task handlers can be split into 2 parts:

• When certain emojis are added as a reaction to a message, the task handler
creates a new task for the associated emoji on the configured platform (e.g. Red-
mine). This is currently implemented for Redmine and the team organization tool
“Trello”.

• When a new message is written in the thread of a message tagged as bug, this
message is added as a new comment in the issue tracker. This documents the

2https://api.slack.com/events-api

Page 22

https://api.slack.com/events-api


Chapter 3. Semi-Automated Bug-Tracking with Elfriede

whole discussion for an issue on Slack and allows to see the whole picture in the
issue tracker, without having to switch back to Slack.

How this workflow looks like can be seen in Figure 3–2. By marking this message with
the bug reaction “Elfriede” was triggered and created a Redmine ticket with its exact
message as content. Every further message posted below Elfriede’s will be automati-
cally added as a new comment in the Redmine ticket.

Fig. 3–2: Task Handler Example.

3.3.3 File Handler

The file handler solves an issue that we observed when commenting on uploaded
files: The comments are posted in all channels where the file was posted. This often
reduces readability and overview in a channel, as the discussion in the channel might
have continued, while comments for files that were uploaded in the past always show
up as new messages, and therefore destroying semantic locality in channels.

To solve this issue the file handler posts a message below every file that can then be
used as a thread only for this file. Therefore commenting on files is not necessary any
more.

Figure 3–3 shows an uploaded picture and the thread created by “Elfriede”. It is also
visible that the created thread already contains 5 replies, that would otherwise clutter
the overview of the channel.

Page 23



Chapter 3. Semi-Automated Bug-Tracking with Elfriede

Fig. 3–3: File Handler Example.

3.4 Results
So far Elfriede has created 130 Redmine Issues and countless threads, and no man-
ual observation of Slack channels as well as manual creation of Redmine issues is
necessary any more.

Page 24



Chapter 4. Conclusion

4 Conclusion

This Interdisciplinary Project at the Chair of Astronautics can be summarized as the
most interesting time of my Bachelor’s and Master’s studies. Reflecting on the amount
of new knowledge and the many chances to put learned theory into practice I never
learned as much in 2 years as I did now.

I am glad that I joined the project in May 2016, even though many, many hours have
been spent on it I would not know how these could have been spent better than in this
huge, interesting and interdisciplinary project.

Here I would like to thank many different people for their cooperation, enthusiasm and
countless explanations of things that I did not know or still have only a very limited
understanding of.

I especially want to thank Sebastian Rückerl for welcoming me into this team and Flo-
rian Schummer for his support in my very first weeks as Software Engineer in this
project and ever since. Furthermore, I want to thank Martin Langer for his continuous
motivation for this project and all the help that he provides everyone involved. Finally, I
want to express my gratitude for all the people I was able to get to know and work with.
The things we accomplished would not have been possible without the Operations
team and the support of the rest of the MOVE team.

Page 25

View publication statsView publication stats

https://www.researchgate.net/publication/324891822

	Introduction
	MOVE-II Operations System Software
	Timeline
	Founding of the Operations Team
	Collection of Requirements
	Creation of Mock-Ups
	Draft of the Architecture
	Development Process
	Artifacts
	Events
	Roles

	Operations System Software Architecture

	Semi-Automated Bug-Tracking with Elfriede
	Problem Statement
	Solution
	Implementation
	General Concept
	Task Handlers
	File Handler

	Results

	Conclusion

