See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325389203

Agile Mission Operations in the CubeSat Project MOVE-II

Conference Paper - May 2018

DOI: 10.2514/6.2018-2635

CITATIONS
0

6 authors, including:

. Alexander Lill
Technische Universitat Miinchen

5 PUBLICATIONS 4 CITATIONS

SEE PROFILE

Constantin Costescu
Technische Universitat Miinchen
3 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject First-MOVE CubeSat View project

poject MOVE-II View project

All content following this page was uploaded by Alexander Lill on 31 May 2018.

The user has requested enhancement of the downloaded file.

READS
60

Thomas Zwickl
Technische Universitat Miinchen

6 PUBLICATIONS 4 CITATIONS

SEE PROFILE

Lucie Patzwahl
Technische Universitat Miinchen

2 PUBLICATIONS 0 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/325389203_Agile_Mission_Operations_in_the_CubeSat_Project_MOVE-II?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325389203_Agile_Mission_Operations_in_the_CubeSat_Project_MOVE-II?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/First-MOVE-CubeSat?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/MOVE-II?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Zwickl?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Zwickl?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Zwickl?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Constantin_Costescu4?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Constantin_Costescu4?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Constantin_Costescu4?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucie_Patzwahl?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucie_Patzwahl?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Muenchen?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lucie_Patzwahl?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Lill2?enrichId=rgreq-3b09accf7dd5c9aff26cbaa0c8ab0ea4-XXX&enrichSource=Y292ZXJQYWdlOzMyNTM4OTIwMztBUzo2MzIzNTI0NDMyMzIyNTdAMTUyNzc3NTk3OTU4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Agile Mission Operations in the CubeSat Project MOVE-II

A. Lill*, T. Zwickl, C. Costescu, L. Patzwahl, C. Soare, M. Langer
Chair of Astronautics, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany

With the continuous advancements in commercial off-the-shelf small satellite technology,
there has been a significant increase in proposed missions and an ongoing trend towards
rapid development and launch. Traditionally, mission operations of larger spacecraft utilize
established products, adapting the operational interfaces and software to the needs of the
specific mission. This paper reports the creation of the mission operations interface for a
CubeSat mission from scratch to a fully operational system in about seven months under the
voluntary commitment of about six students. We will first give a short introduction into the
traditional software development used extensively in the space sector before we briefly describe
CubeSats and our own CubeSat project, called MOVE-IL. The used software development
process will be described using the agile methodology Scrum as a baseline. It will be explained
how this process was implemented utilizing tools like Trello, GitLab and Slack. Afterward the
software design, as well as used frameworks and software, are briefly described to demonstrate
how these go hand in hand with our development process. Subsequently, our operations
software, as well as satellite operations with our software, are described with a focus on
advantages and disadvantages of our software development approach and general lessons
learned that we gathered during our project.

I. Introduction

Traditional software for space applications focuses on achieving robustness and reliability and therefore follows
classical and predictive development approaches such as the V-model or the waterfall model. These models aim at
building the system sequentially by determining the requirements of the mission as a first step, then deriving the
software architecture and finally breaking it down into modules that are designed in more detail [1]. This process
can be formalized by modeling the system with the help of a System Modeling Language [2], which allows defining
the subsystems and interfaces of the system in more detail before the start of the development phase. After the
implementation of the software according to the requirements and specified architecture, all software is validated through
unit and system testing. Final user acceptance testing verifies that all user requirements are met. Only after this phase is
concluded real-time operations begin. Most satellite systems go through this mostly linear process, which demands
special attention to the formulation of the requirements as they become more difficult to change later on in the project.
Although these methodologies may imply longer implementation times and demand higher budgets when compared
to more modern, adaptive development strategies, the space industry has been reluctant to adopt newer approaches.
Furthermore, institutions in the space software industry may decide to use legacy software frameworks [3] which are
hard to adapt to newer models (such as the spiral model or agile development).

CubeSats [4] are standardized satellites that come in sizes specified in so-called units (10 x 10 x 10 cm) and
are usually developed for educational purposes or for technology demonstration. The low cost of CubeSat projects
enables students and companies to experiment with different development processes and technologies while obtaining
fast hands-on experience with spacecraft technologies without the complexity and cost of traditional space programs.
Although it may vary for each project, the development of a CubeSat follows a linear pattern, as workforce and budget
are usually limited. Due to these limitations the focus is usually placed on the development of hardware and on-board
software, pushing the development of operations software to the very end, potentially causing a rushed implementation.
This issue can be tackled by agile development techniques which allow to start the creation of the operations software
early and to grow alongside the CubeSat, as it is dynamically adapted to new requirements.

*alexander.lill@tum.de, phone: +49 89 289 16017

mailto:alexander.lill@tum.de

The Munich Orbital Verification Experiment II (MOVE-II) project is the second satellite of the CubeSat program
MOVE of the Technical University of Munich. This one-unit (1U) CubeSat is being developed since April 2015 [S] and
will be launched into a 575 km sun-synchronous orbit in late 2018. The project is supervised by two Ph.D. students and
over the course of three years, more than 150 students from five different faculties were involved in developing and
building the MOVE-II CubeSat and its associated systems. During the development, most of the hardware and software
were designed and implemented by students through voluntary work or theses and study projects at the associated Chair
of Astronautics.

The MOVE-II working environment is quite different compared to the environments found in the commercial space
industry. All members of the project are students who pursue their bachelor’s or master’s degree and are therefore
not working full-time for the project. Their participation in the project is either connected to a thesis, part of their
study curriculum as Interdisciplinary Project (IDP), or completely voluntary. This leads to less weekly working hours
compared to full-time developers and makes daily meetings impossible. This is compensated by the high motivation
and dedication of the students for the MOVE-II project. Furthermore most of the students participating in the MOVE-II
project start with only minor practical experience in their respective fields or have never worked in such a big team.
Students join the project either because they are interested in spaceflight and satellite technology or because they want
to acquire practical experience in a fascinating and extraordinary field.

As can be seen in Figure 1 the MOVE-II project is composed of a space segment and a ground segment. The space
segment is represented by the Satellite System and contains several different subsystems that make up the hardware and
software of the satellite itself. The Ground Segment contains the Ground Station System and the Operations System.
The Ground Station System consists of the hardware required for receiving and transmitting signals from and to the
satellite, and all necessary hardware and software to decode and encode these signals. The Operations System includes
the hardware and software necessary for analyzing the satellite’s data and controlling it. Its development and use will be
the focus of this paper.

Space Segment Ground Segment

Satellite System Ground Station System Operations System

Fig.1 System of Systems.

Statistics [6, 7] show that many CubeSats fail due to insufficient testing of the satellite in its flight configuration.
Further, the lessons learned of First-MOVE [8] contain strong recommendations to start developing and testing the
software as early as possible. As observed by other teams using agile methodologies helps testing software already during
development and improves its maturity [9]. This is why agile development methodologies were used in MOVE-II [10].

I1. Operations Software Development Process
This section introduces the used software development process and describes how this process was implemented.

A. Process Specification

The software development process used for the MOVE-II Operations System is based on agile software development
methodologies. It is inspired by Scrum and was adjusted to our needs. This was necessary due to the reasons mentioned
in section I. The specification of our software development process is described in more detail in an interdisciplinary
project report [11] and briefly summarized in the subsequent paragraphs of this paper. The Scrum development process
consists of artifacts created and used in the process, events that define the process, and roles that participants of the
process have [12]. The following paragraphs will briefly describe the most important parts of Scrum and provide a
summary of the adjustments we applied.

The Scrum artifacts Product Backlog and Sprint Backlog, which contain the total list of User Stories—things
that one should be able to do with the product—and the list of User Stories that should be implemented in the current
iteration respectively, were kept unchanged. This is also the case for the definition of the Product Increment. It
describes the extended and improved version of the product after any given iteration.

The following events are defined in the Scrum process: The Sprint, describing the time frame of one iteration of the
process, normally has a constant length of two to four weeks. In our environment, the duration was shortened to one
week. Experience has shown that for longer Sprints, work was only done in the few days before the Sprint ends and that
the amount of finished work can be increased by focusing more on short-term goals that can be reached during shorter
sessions of a few hours, for example in the evenings or the weekends.

The Sprint Planning event usually happens between two Sprints and is the event where the whole team decides
which User Stories will be worked on in the next Sprint. The effort for the different User Stories is estimated to get a
better idea of how many User Stories should be included in the next Sprint. In our environment, the estimate for every
task was given by the team leader and confirmed or discussed by the rest of the team, and then adjusted accordingly if
necessary. Experience has shown that this approach saves time compared to other estimation techniques, for example
Planning Poker [13].

Daily Scrum is the daily, very short meeting of the whole team where the finished tasks, ongoing tasks, and current
impediments are discussed. Due to our environment (the voluntary nature of the project, this project not being a full-time
endeavor, and the different schedules of the students) these daily meetings were completely dropped. Experience
has shown that the voluntary team members rarely work on the project every day, but rather in specific time frames
like for example weekends or on some free evenings every week. This was resolved by making the on-demand team
communication as convenient as possible and will be explained in the following subsection II.B.

The Sprint Review, which is done at the end of every Sprint to inspect the latest Product Increment and update the
Product Backlog, was kept unchanged. The same was done with the Sprint Retrospective, which is occasionally done
to allow the team to reflect on the past Sprint, analyze their work and deduce what went well and where there might
be potential for improvement. These two events are important for demonstrating the progress of the team and ensure
continuous improvement.

The following roles are defined in the Scrum process: The Product Owner is responsible for the Product Backlog.
User Stories need to be clearly defined and ordered by priority according to the Product Owner’s vision of the product.
The Product Owner is accountable for the delivered product. The Scrum Master’s responsibility is to make sure that the
Scrum process is followed and that all rules, practices, and values of the process are understood. The Scrum Master is a
servant-leader to the Product Owner and the team of developers and also tries to ensure the team’s progress by removing
impediments. Due to the limited number of available persons in our environment the same person occupied the roles
of Product Owner and Scrum Master. The Developers implement the User Stories contained in the Sprint Backlog.
The developers are encouraged to organize and manage their own work. While the limitations of our environment (see
section I) apply, this role was kept unchanged.

B. Process Implementation

Given the more formal specification of the software development process used for the MOVE-II Operations System
in the last paragraphs, this subsection will describe how this process was implemented. First, our team communication
tool and our project management tool are presented. Afterward, the implementation of our process is explained step by
step.

The MOVE-II project makes great use of the team communication tool Slack [14]. It allows interactive communication
with the rest of the MOVE-II team as well as within the team in real-time. It was mainly used to coordinate with other
team members about subsystem related tasks and allowed the operators of the system to give us feedback about subsystem
pages, bugs, and problems encountered while working with the interface as well as feature requests regarding missing
functionality. As we did not know every requirement of each subsystem interface, Slack enabled us to continuously
receive feedback after releasing and deploying a new Product Increment. This allowed us to refine the application
towards the requirements of the operators with every iteration.

To facilitate the project management the web-based project management application Trello [15] was used. Trello
allows to create lists with an arbitrary number of cards. In our environment, each list represents the state of a card. Each
card resembles a User Story and contains all the information required, such as a description, links to external resources
and which developers are working on it. As can be seen in Figure 2 our User Stories can be in ten different states/lists,
which will be explained subsequently.

Prioritized

Inbox Backlog

Backlog To Do Doing

Y

Being

to FM Tested to EM Reviewed

@ Done Ready to Merge Being Ready to Merge

Fig.2 User Story States.

The “Inbox” is the list where all new cards, which may be new features, observed bugs or possible improvements,
are kept until they are sorted into one of the following lists. Our Product Backlog resides in the list “Backlog”. From
time to time, the most important tasks from this list are moved to the “Prioritized Backlog”. This separation of backlogs
was done to tackle the high number of items in the Backlog and to make the prioritization of tasks easier.

In our weekly team meeting the Sprint Review and Sprint Planning are conducted. All finished User Stories in
the “Done” list are archived and therefore hidden from the board. Afterward, tasks that are started, but not yet finished
and therefore still in any of the lists between “To Do” and “Done” (see gray boxes), are discussed to determine their
status and their possible impediments. Then our “To Do” list is filled with tasks from the “Prioritized Backlog”. After
this weekly meeting our Sprint starts and the developers take cards from the “To Do” list and move it into the “Doing”
list as soon as they start working on them.

As soon as a task is finished, the card is moved into the “Being Reviewed” list and assigned to another team member
for review. We use the version control system git [16] in combination with the web-based git repository manager
GitLab [17] and a Feature Branch Workflow [18]. In our project the master and develop branches represent the
software version for our production and testing system respectively. Merge Requests (also known as Pull Requests)
conveniently present all added, deleted and modified lines of code and are used to review the changes that are requested
to be merged from a specific feature branch into the develop branch, the branch containing the most current version that
is being tested. Reviewers can comment on every single line and point out problems, give feedback, and ask questions.
The created Merge Requests are only accepted once all discussions are resolved by answering all questions and either
implementing the feedback or agreeing that it is not necessary to do so.

Once the Merge Request for a User Story has been reviewed and approved, the card for this User Story is moved for-
ward to the list “Ready to Merge to EM”. If the review shows that changes to the code are necessary, the card is re-assigned
to the initial developer and moved backward to the “To Do” list. The “Ready to Merge to EM” list represents changes that
are ready to be deployed in our test environment and are just waiting for someone to oversee the deployment and check
if the new version works, or for the test environment to be available. This is necessary as sometimes other members of
the project are using our test environment for their own tests, as it is connected to the Engineering Model (EM) of our
satellite and is therefore often used for operator trainings and to test new software for the on-board computer of the satellite.

To automatize the deployment process, GitLab offers a free to use Continuous Integration (CI) and Continuous
Deployment (CD) pipeline called GitLab CI/CD which is used in the project to deploy the most up-to-date version of our
system on the respective servers. It also allows to roll-back to a previous version whenever some problem with the new
version is encountered to ensure the availability of the system for the ongoing testing of the satellite system. To facilitate
the deployment process with the automatic build pipelines we used Docker [19] to containerize all our microservices
(see subsection III.A). Docker provides the functionality to deploy applications without having to install and configure all
their dependencies on the host operating system. In the project, it is used to run the microservices in so-called containers,
which include the minimal runtime environment of the application, and thus are independent of the host system. These
containers can run isolated without the need of virtual machines and have the advantage that the software will behave
the same in every environment where it is deployed. Another advantage of Docker is that it offers reproducible builds
because it always starts with a clean environment to avoid conflicts with other dependencies or leftovers from a previous
installation or build. After the changes were successfully deployed in our test environment the corresponding User Story
is moved to the “Being Tested” list. It stays here until all changes have been successfully tested and the team agrees
that this User Story is ready to be deployed in our production environment. Every team member has the capability to
make this decision, but every other team member can also raise his or her concerns about such a decision. This might
be the case, if an issue concerning the implemented changes was found. In this case the card goes back to the “To Do” list.

User Stories that are in the “Ready to Merge to FM” list are normally deployed to the production environment once a
week after the team meeting (see section about Sprint Review and Sprint Planning above). Our production environment
is connected to the Flight Model (FM) of our satellite and should be working stable and reliable at all times. This will be
of even more importance once our satellite has been launched. The successfully implemented User Stories end up in the
“Done” column and will be archived at the beginning of the next team meeting (see section about Sprint Review above).

III. Operations Software Design
This section briefly describes the design of our Operations Software. First, the principle of microservices and
their use in our architecture are explained. A message broker is used for the exchange of information between the
microservices, while the connecting clients use a REST API and WebSockets for communication. Then open-source
frameworks and other software used to build our system are described, such as databases, load balancing tools, and
log management tools.

A. Microservices

In the project, we followed the approach of implementing a Microservice Architecture (MSA) which is a composition
of several small and independent services that together provide the functionality of a complex software application [20].
Each of these microservices focuses on exactly one certain functionality. They are loosely coupled through lightweight
protocols and provide high cohesion within themselves. By using technologies like a message broker (see subsection I11.B)
and a REST API (see subsection II1.C) for communication each microservice can be written in a different programming
language. Given this modular approach, it is quite easy to split the workload between multiple team members without
too much overlap during implementation. A MSA, therefore, makes it easier to develop, understand and deploy the
services by using, for example, an automatic build pipeline (see subsection II.B), that can be triggered as soon as there is
a new version.

Figure 3 shows the architecture of our Operations System. The light gray box in the center contains all our
microservices, represented by red boxes. These microservices provide the means to store and retrieve data from the
database (above the light gray box) and query this data using the provided REST API and the WebSockets for real-time
data. Every subsystem has its own microservice and its own database schema, that the microservices connect to using the
Transmission Control Protocol (TCP). In the following paragraphs the two most important microservices, Commanding
(CMD) and Housekeeping (HK), will be explained in more detail.

On the left side of Figure 3 you can see all services that handle communication from and to the satellite by connecting
to the Ground Station System. The Beacon Parser (BPA) is responsible for parsing the raw beacon received from the
satellite as an array of bytes once a minute via a TCP connection to the Ground Station System. It is then interpreted and
sent in an intermediary representation to the Beacon Poster (BPO) using rabbitMQ. The BPO transforms the received
data into a JavaScript Object Notation (JSON) format and sends this to the different microservices using the REST
API. The different “RESQ” services implement our application protocol for commanding the satellite and talk to their
respective counterparts running on the satellite. These “RESQ” services provide functionality for sending commands to
the satellite, receiving their results, and up- or downloading files. The “RESQ” services talk to the Ground Station
System via TCP sockets on the one side, and via rabbitMQ to the CMD microservice on the other side. The CMD
microservice is responsible for handling all commands and file transfers, which are received via the REST API and then
forwarded via rabbitMQ to the “RESQ” services for execution.

The Housekeeping Processor (HPR) shown at the bottom of Figure 3 is responsible for parsing housekeeping files
that are downloaded from the satellite and posting the parsed information to the REST API. The HK microservice is
responsible for handling all housekeeping import requests, which are received via the REST API and then forwarded for
execution via rabbitM Q. The Authentication (AUTH) server at the top of Figure 3 is responsible for user authentication
and access control for the Operations System. It provides a user login and defines user permissions to restrict access to
sensitive data. To implement the AUTH server the Open Authorization 2 (OAuth2) framework was used.

On the right side of Figure 3 you can see all the clients that use the provided REST API to interact with the
microservices. The Notification Service (NOTS) receives beacons from the BPA via rabbitMQ and evaluates them for
non-nominal values using meta-data from the REST API. In case there are non-nominal values the operators are notified,
for example with a message on Slack. The Statistics Service (STATS) queries the different microservices once a day to
provide the operators with statistics about the usage of the Operations System, like the number of executed commands,
user logins or transferred files. The Frontend represents the Operations System Interface that the developers, as well as
the operators, use to interact with the satellite system. It uses the REST API as well as WebSockets to retrieve the latest
data from the microservices.

Authentication
Server
TCP Beacon Beacon REST . N REST Notification
<> mm— | —
Parser : Poster Service
rabbitMQ
CDH EPS HORST | Logbook
REST
TCP THM COoM ADCS e A
H Ol ADCS Health {—’We bSockat -“T“"d
CMD HK PL
‘1T—GP—P I REST Statistics
\ | €=——>
M . I __,/
Housekeeping
Processor

Fig.3 Operations (OPS) System Architecture.

B. Message Broker

RabbitMQ [21] is an open-source message broker where applications can send and receive messages through defined
queues. Using RabbitMQ as middle-ware between the different microservices allows to decouple them and define a
platform and language independent interface. RabbitMQ also provides means for load-balancing and work distribution
by its implementation of different queuing and producer-consumer messaging protocols. Here several applications,
called the producers, send messages to the respective queue. Other applications, called the consumers, subscribe to a
queue. When new messages arrive at the queue they are forwarded to the subscribed applications for further processing.

C.REST API

An Application Programming Interface (API) defines an interface that is used for exchanging data between different
software components. REpresentational State Transfer (REST) is an architectural style for developing stateless services
and is building upon the very widely used Hypertext Transfer Protocol (HTTP) standard. The REST architecture
provides interoperability between services over the internet and usually defines the following CRUD* operations to
access and manipulate textual representations of web resources: The GET request is used to retrieve an existing resource
from a collection. The POST request is used to create a new resource and add it to a collection. The PUT request is
used to update an existing resource. The DELETE request is used to delete an existing resource.

D. WebSockets

One drawback of using the REST communication protocol is that there is no direct connection from the server to the
client, as the client only requests data from the server or sends data there. This means that the web application running
in the browser is not notified about new data from the microservices. In order to guarantee that the visualized data
is up-to-date, the client needs to poll the microservices every few seconds. This has proven to be very inefficient as
it generates unnecessary requests when no new data is available and creates some unwanted delay which inhibits the
operation of the satellite in real time. Thus, we decided to extend our microservices by WebSockets to enable the user’s
browser and the server to open an interactive communication session. This enables the client to send messages to the
server and receive event-driven responses without having to poll the server for a reply. WebSocket is a protocol that
operates as an upgraded HTTP connection, exchanging variable-length frames between the two parties, instead of a
stream. For implementing the WebSockets we used the STOMP protocol which is commonly used inside a WebSocket
when a web app needs to support bidirectional communication with a web server. It defines an interoperable wire format
so that any of the available STOMP clients can communicate with any STOMP message broker. This provides easy and
widespread messaging interoperability among languages and platforms.

E. Frameworks

This section describes the frameworks Angular 2 [22] and Spring [23] that were used within the project to simplify
building and deploying our applications.

Angular 2 is an open-source web application framework that was used to develop the user interface for the operators
that operate the satellite. Angular 2 provides some essential advantages compared to the traditional development of
web-pages with libraries such as jQuery. For once, Angular 2 supports templating, that allows to reuse components on
different pages without writing the same code over and over again. Second, it allows to write very modular code, so that
several developers can work in parallel on the application, without creating too many conflicts when the same parts of
the software are changed by two people at the same time.

The Spring Framework is an application framework for the Java Platform and was used in the project to implement
all the microservices responsible for retrieving and persisting the data from the satellite. With Spring Boot one can
create a stand-alone Spring application that is easy to deploy on basically any environment that supports Java. The
Spring Framework comes with a lot of other functionality, for example, annotations that allow to develop a REST
interface with minimal effort.

F. Other Software
During the project, a lot of other software was used to complement the functionality of our own applications. In the
following, some of the most important used software is briefly introduced.

*Create, Read, Update, and Delete

PostgreSQL [24] is an open-source, general purpose and object-oriented database management system that was used
to persist all the data exchanged with the satellite or generated by our Ground Station System software.

HAProxy [25] is an open source, high-performance TCP/Hypertext Transfer Protocol Secure (HTTPS) load balancer
that acts as a single point of contact for all clients connecting to our microservices. This provides a simple interface
to our clients and hides the complexity of different microservices reacting to different requests. With the HAProxy
the requests can be forwarded to the respective microservice by mapping the Uniform Resource Locator (URL) to the
matching microservice. This provides an abstraction to the clients as they do not need to know on which port and server
the respective microservice is running. They just contact the HAProxy which takes care that the request will arrive at
the correct microservice.

As the entire system only consists of many different microservices that can also be run distributed over different
machines, it is a challenge to collect all the logs that may be involved in identifying and fixing a certain problem. To
fix this issue, Graylog 2 [26] in combination with Logspout [27] was used to send and accumulate all logs from all
microservices in chronological order in one central place. With those tools, it is now possible to search through all logs
and pinpoint the cause of the problem.

IV. Results

This section describes the results of the software development process defined in the previous sections and
summarizes its key advantages. Lessons learned from using this process can be found in section V.

The developed Operations System Software consists of a browser application that is used by the operators for
analyzing the satellite’s data and controlling it. This browser application connects to our servers using a REST API and
WebSockets (see subsection III.C and subsection III.D). This allows to show historic telemetry as well as live telemetry
in real time and access satellite status information from anywhere in the world. Figure 4 shows the page containing the
commanding interface of the MOVE-II satellite, while Figure 5 shows an example of the graphs used for analyzing
telemetry.

|

Overview
=] Logbook

& Model Command History

W omit D Updated on Staf

Commanding 13/04/18 20:05:53 - COMPLETED - - e f " M " |

13/04/18 20:03:45 ‘COMPLETED R T B AN A B el T
> FileTransfer
13/04/18 19:59:34 e e COMPLETED

13/04/18 18:57:49 ‘COMPLETED

13/04/18 16:45:24 4 ‘COMPLETED

13/04/18 16:44:41 ‘COMPLETED

13/04/18 15:07:35 . - COMPLETED

13/04/18 15:07:32 UNAPPROVED

13/04/18 15:07:02 = COMPLETED L e T e —————
13/04/18 15:06:44 COMPLETED ST 1 M) AR | L] M

13/04/18 15:06:10 COMPLETED

A mEeeT 13/04/18 15:.05:54 ‘COMPLETED R et el [S B Fadd

13/04/18 15:03:33 = L] r COMPLETED

%2, Sources

© © © © © © © © © © © © © o

13/04/18 15:03:01 ‘COMPLETED T ST T L

Fig. 4 Commanding Page in the OPS Interface.

The implemented web application can be accessed from anywhere and brings some major advantages for mission
operations. In our environment (see section I) the working hours of the team members depend on their schedules as well
as their commitment. Being able to access the satellite status and command the satellite this conveniently simplifies
development as well as later operations of MOVE-II, enabling testing whenever desired and avoiding the necessity to
come to university on weekends or late at night.

Using our agile software development process a very first version of the Operations System was available for the
first thermal vacuum chamber tests in May 2017. This minimum viable product allowed to see the temperatures of

12:00 13:00 14:00

J: THM

@& Analysis

Fig. 5 Attitude Determination and Control System (ADCS) Page in the OPS Interface.

different satellite parts in convenient graphs, showing both historic data of the last hours as well as live data. For this the
data was already transmitted via radio signals, processed by the Ground Station System and forwarded to our Operations
System the same way it will happen during real operations. This allowed us to develop as well as debug the satellite
using the complete chain of communication following a “test as you fly, and fly as you test” [28] approach. This also
had a positive effect on the maturity of our Ground Station System.

Using our Operations System in parallel to the development of the satellite also allowed us to receive feedback from
the satellite developers and operators right from the beginning. Using the system as if the satellite was already in orbit,
for example by simulating the length of typical overpasses, additionally generated a constant flow of valuable feedback,
either in person or via our team communication tool Slack (see subsection II.B). The feedback concerned the user
interface, the behavior of the system and possible issues during the future operations of MOVE-II. This allowed us to
detect and resolve many bugs during the development of our systems. It helped us to tailor our software to the needs of
the future operators and thus avoid over-engineering and implementing superfluous functionality.

Due to the availability of the Operations System during the development of MOVE-II it was additionally possible to
start the training of satellite operators even though the development of neither the Satellite System nor the Operations
System was concluded. This enabled us to recruit future operators while our systems were still being developed and
increased the possible time for trainings. This furthermore allowed us to transfer knowledge directly from the developers
to the operators and therefore improve the operators’ understanding of the systems.

V. Lessons Learned
During the development and use of the MOVE-II Operations System, a variety of observations was made and
challenges had to be faced. In this section, our lessons learned in the areas of the development process and the developed
system, communication, project management, and general software development will be briefly summarized.

A. Development Process

The MOVE-II project followed the approach of building an Engineering Model (EM) before starting to build the
Flight Model (FM). This approach resulted in having one and shortly later two satellites that could be used for developing
and testing the Ground Station and Operations System. As described in subsection II.B this was used for creating two
different environments: The EM environment, used for testing new configurations and satellite software, and the FM
environment, sometimes used for operator trainings and tests that have to be conducted with the flight hardware. At the

same time, the EM environment is used by the developers of the Operations System to test new features, improvements,
and bug fixes. This sometimes resulted in an EM environment that was not stable or did not work as expected, which in
turn caused delays for the developers of the satellite software. A possible solution for future projects would be having
another environment only for the Operations System developers to test their new software without influencing other
team members.

Developing the Operations System in parallel to training the operators comes with constant changes in the
functionality and appearance of the interface, a challenge that the operators have to deal with. New features are added or
improvements and bug fixes are implemented. Sometimes the introduction of new bugs could not be avoided. In our
experience, this especially affects training material for new operators that quickly becomes outdated, whereas trained
operators normally catch up quickly or just ask their team for help.

B. Communication

Communication is one of the key success factors of projects with a lot of team members. Our experience shows
that clearly defined communication channels are crucial for a good flow of information. In MOVE-II every subsystem
had its own Slack channel for communication between all other subsystems and this particular subsystem, as well as
a channel for team-internal communication to allow efficient exchange of information and to avoid non-transparent
communication in direct messages, which are only visible to the sender and one receiver. This supports open and clear
communication between the team members in different subsystems and their own subsystem.

The developers of the Operations System used the team-internal channel to quickly and transparently discuss
problems and implementation details, while the public channel was used to get feedback from the operators using
our software and to improve the understanding of their needs and requirements. Troubleshooting and creating bug
reports were supported by this via the direct and responsive communication between the users and the developers, and
automated workflows that allow the creation of bug reports directly from these messages, including the full conversation
protocols [11].

Making the exchange of information as convenient as possible allowed us to be aware of the needs of our operators
as well as the developers of the satellite and to incorporate this knowledge into our software.

C. Project Management

It is important to have a good overview in projects with multiple team members and a high number of work packages
and tasks. Project management software is crucial to be aware of the status of each task, which tasks are being worked
on and who is working on which task. For this purpose different project management software should be evaluated to
guarantee that it fits the used development process. Our experience shows that it is especially important to have exactly
one place for all tasks instead of using a variety of tools and places. This avoids confusion and ensures a good overview
of all relevant tasks and visualization of progress or lack thereof.

During the project, the regular use of retrospectives ensures reflection of the used processes, tools and problems and
allows to deduce improvements. Our experience shows that these improvements and lessons learned are important
for the success of the current and future projects. While writing these lessons learned it was further realized, that
continuously collecting lessons learned throughout the project simplifies writing a summary of lessons learned.

D. Software Development

The long-term success of any software project can be achieved by quality code supported by documentation.
Maintaining a good code quality is hard, especially in a student team, but can be achieved with code reviews. In our
experience, this can be implemented by having at least two developers who are responsible for each component or
microservice. This way, there is always another team member that knows how a component or microservice works
and can provide feedback and a valuable sanity check for every change. Furthermore, this approach ensures that the
project’s progress is not impacted by the fluctuation of team members. In our project peer code reviews were conducted
for all changes using Merge Requests (see subsection II.B), which were on occasion additionally discussed in team
meetings in form of group code reviews.

Another aspect of quality code is that there are automatic tests, which enable better reusability and maintainability.
This is crucial for the detection of changes that introduce new bugs. This aspect is most often skipped in favor of faster
development, as writing the tests can take more time than implementing the feature or fix itself. There are many reasons

10

why a team can end up not writing tests. From our experience, this might happen in exam periods, where team members
have less time for the project and tasks are postponed until the exam period is over. In this case, seemingly less important
tasks—for example writing tests—are neglected bringing instant short-term benefits, for instance less time spent or
more visible progress. The negative consequences of this only become apparent later in the project, when the compo-
nent becomes more complex or when new developers join the project and have no possibility to safely modify existing code.

The capabilities of the tools used for the development and testing of the Satellite System provide important insights
into the necessary capabilities of the future Operations Software. In our experience, the software used for satellite
operations should provide the same functionality as the software used during development and testing of the satellite.
This avoids doing work twice, as the same code can be used for development, debugging and operations, and allows
faster debugging of non-nominal behavior in orbit.

Given the used microservice architecture (see subsection III.A) the number of components that needed to be
deployed every week was quite high. In our experience automation for all repeatedly executed steps always pays off.
Therefore GitLab CI/CD was implemented (see subsection II1.B) and used extensively in every part of our project, for
example for automatically compiling the latest version of our IXTEX documentation and providing a Portable Document
Format (PDF) document for download. This allowed us to improve team productivity and reduce human errors that
often happen during routine tasks.

Due to the nature of student projects, it can never be predicted how many team members can actively collaborate,
or how long they will participate in the project (see section I). Students may have to focus on other areas of their
studies and reduce or even cease their efforts for the project. This can quickly become a critical issue if there is no
documentation about their work or no other developer with knowledge about the internals of the affected components. In
our experience, it is very important to never stop recruiting for the project, even if systems and components are finished.
While documentation provides an overview of the systems and steps to troubleshoot and solve common issues, experts
with knowledge of the system often reduce troubleshooting time and are able to provide more efficient help. This is
especially helpful for satellite operations, where response times might be critical for the mission’s success.

VI. Conclusion & Outlook

This paper presented the agile development process used by about six voluntary students and applied to the
Operations System of the MOVE-II CubeSat project. This approach allowed to create software based on the users’
changing requirements and resulted in a minimum viable product in time for our thermal vacuum tests only five months
after development started. Continuous feedback from the satellite developers and operators was directly integrated into
the development process, and the full chain of communication was tested as soon as possible. Since then this first version
was extended and improved iteratively following the described process. Currently, the MOVE-II CubeSat and its related
systems are being finalized, while the future operators are being trained. The launch is scheduled for October 2018.

It is planned to open-source the created software and further experiment with modern technologies and development
processes. Many students from the MOVE-II project are currently transitioning to other projects, for example “MOVE-
ON”. The “MOVE-ON” project aims to develop and start a high-altitude balloon every half year. This serves as a
platform for short-lived and cost-efficient experiments to verify and test spacecraft technologies and development
processes. Furthermore, it is planned to investigate the use of Test-Driven Development (TDD) to implement our
lessons learned and further improve our processes.

VII. Acknowledgments
The authors acknowledge the funding of MOVE-II by the Federal Ministry of Economics and Energy (BMWi),
following a decision of the German Bundestag, via the German Aerospace Center (DLR) with funding grant number 50
RM 1509.

References
[1] Ley, W., Wittmann, K., and Hallmann, W., Handbook of Space Technology, Vol. 22, John Wiley & Sons, 2009.

[2] Spangelo, S. C., Kaslow, D., Delp, C., Cole, B., Anderson, L., Fosse, E., Gilbert, B. S., Hartman, L., Kahn, T., and Cutler, J.,

11

3

—

[4

—

[5

—

(6]

[7
[8

—_ =

[9

—

(10]

(11]

[12]

(13]

(14]
[15]
(16]
(17]
(18]

[19]
(20]

[21]
(22]
(23]
[24]

[25]
[26]
[27]
(28]

“Applying Model Based Systems Engineering (MBSE) to a standard CubeSat,” 2012 IEEE Aerospace Conference, IEEE, 2012,
pp. 1-20. doi:10.1109/AER0O.2012.6187339.

Evans, D. J., “OPS-SAT: Preparing for the Operations of ESA’s First NanoSat,” 14th International Conference on Space
Operations, 2016, pp. 2490-2499. doi:10.2514/6.2016-2490.

Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S., and Twiggs, R., “CubeSat: A new Generation of Picosatellite for Education
and Industry Low-Cost Space Experimentation,” 14th Annual/USU Conference on Small Satellites, 2000.

Langer, M., Schummer, F., Appel, N., Gruebler, T., Janzer, K., Kiesbye, J., Krempel, L., Lill, A., Messmann, D., Rueckerl, S.,
and Weisgerber, M., “MOVE-II - The Munich Orbital Verification Experiment II,” Proceedings of the 4th IAA Conference on
University Satellite Missions & CubeSat Workshop, IAA-AAS-CU-17-06-05, Rome, Italy, 2017.

Langer, M., and Bouwmeester, J., “Reliability of CubeSats — Statistical Data, Developers’ Beliefs and the Way Forward,”
Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites,Paper SSC16-X-2, Logan, UT, 2016.

Swartwout, M., “The First One Hundred CubeSats: A Statistical Look,” Journal of Small Satellites, Vol. 2, 2013, pp. 213-233.

Langer, M., Olthoff, C., Harder, J., Fuchs, C., Dziura, M., Hoehn, A., and Walter, U., “Results and lessons learned from the
CubeSat mission First-MOVE,” Small Satellite Missions for Earth Observation, 10th International Symposium, IAA, Berlin,
2015.

Et)

Wortman, K., Duncan, B., and Melin, E., “Agile methodology for spacecraft ground software development: A cultural shift,
2017 IEEE Aerospace Conference, IEEE, 2017, pp. 1-8. doi:10.1109/AER0.2017.7943886.

Lill, A., Messmann, D., and Langer, M., “Agile Software Development for Space Applications,” Deutscher Luft- und
Raumfahrtkongress 2017, Deutsche Gesellschaft fiir Luft- und Raumfahrt - Lilienthal-Oberth e.V., Munich, Germany, 2017.

Lill, A., “Organization and Development of the Mission Operations System for the MOVE-II CubeSat,” Interdisciplinary
Project, Technical University of Munich, RT-IDP 2016/05, 2018. doi:10.13140/RG.2.2.35355.36646.

Schwaber, K., and Beedle, M., Agile Software Development with Scrum, 1% ed., Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2001.

Javdani Gandomani, T., Koh, T. W., and Binhamid, A., “A Case Study Research on Software Cost Estimation Using
Experts’. Estimates, Wideband Delphi, and Planning Poker Technique,” International Journal of Software Engineering and its
Applications, Vol. 8, 2014, pp. 173-182. doi:10.14257/ijseia.2014.8.11.16.

Slack Technologies, Inc., “Slack,” , 2018. URL https://slack.com, v3.1.1, visited on 2018-04-20.

Atlassian Corporation Plc, “Trello,” , 2018. URL https://trello.com/, v2.10.3, visited on 2018-04-20.

Linus Torvalds, “Git,” , 2018. URL https://git-scm.com/, v2.16.3, visited on 2018-04-20.

GitLab Inc., “GitLab Community Edition,” , 2018. URL https://gitlab.com/, v10.5.6, visited on 2018-04-20.

Atlassian Corporation Plc, “Tutorial: Git Feature Branch Workflow,” , 2018. URL https://www.atlassian.com/git/
tutorials/comparing-workflows/feature-branch-workflow, visited on 2018-04-20.

Docker, Inc., “Docker,” , 2018. URL https://www.docker.com/, v17.06, visited on 2018-04-20.

Bakshi, K., “Microservices-based software architecture and approaches,” 2017 IEEE Aerospace Conference, 2017, pp. 1-8.
doi:10.1109/AERO.2017.7943959.

Pivotal Software, Inc., “RabbitMQ,” , 2017. URL http://www.rabbitmg.com/, v3.6.11, visited on 2018-04-20.
Google LLC, “Angular,” , 2018. URL https://angular.io/, v5.2.0, visited on 2018-04-20.
Pivotal Software, Inc., “Spring Framework,” , 2017. URL https://spring.io/, v4.3.6, visited on 2018-04-20.

PostgreSQL Global Development Group, “PostgreSQL,” , 2017. URL https://www.postgresql.org/, v9.6.4, visited on
2018-04-20.

Willy Tarreau, “HAProxy,” , 2018. URL https://www.haproxy.org/, vl.7.11, visited on 2018-04-20.
Graylog, Inc., “Graylog,” , 2018. URL https://www.graylog.org/, v2.4.3, visited on 2018-04-20.
Glider Labs, “Logspout,” , 2018. URL https://github.com/gliderlabs/logspout, v3.3, visited on 2018-04-20.

Leveson, N. G., “Role of Software in Spacecraft Accidents,” Journal of Spacecraft and Rockets, Vol. 41, No. 4, 2004, pp.
564-575. doi:10.2514/1.11950.

12

https://slack.com
https://trello.com/
https://git-scm.com/
https://gitlab.com/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.docker.com/
http://www.rabbitmq.com/
https://angular.io/
https://spring.io/
https://www.postgresql.org/
https://www.haproxy.org/
https://www.graylog.org/
https://github.com/gliderlabs/logspout
https://www.researchgate.net/publication/325389203

	Introduction
	Operations Software Development Process
	Process Specification
	Process Implementation

	Operations Software Design
	Microservices
	Message Broker
	REST API
	WebSockets
	Frameworks
	Other Software

	Results
	Lessons Learned
	Development Process
	Communication
	Project Management
	Software Development

	Conclusion & Outlook
	Acknowledgments

