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Introduction: What is Dynamo?

● Run-time software optimizer
● Performs optimization on a native instruction stream
● Intruction stream can come from

– a statically compiled native binary; or

– a dynamically generated binary, e.g., by a JIT compiler

● Implemented entirely in software
● Provided as a user-mode DLL



Background: Why Dynamo?

● Greater degree of delayed binding due to OOP paradigms and modern software techniques
– Functions and methods are looked up at run-time

– Limits the size and scope available for static analysis by the compiler

● Modern software is shipped as collection DLLs (shared library)
– Parts of DLL referenced at run-time

– Static optimizations virtually impossible

● Generally, dynamic code generation environments make static optimization techniques impractical
● Reliance on independent software vendors to enable optimizations

– System vendors not able to control the keys that unlock thei performance potential

● Current trend of offloading complexity from hardware to the compiler (CISC to RISC to VLIW 
progression)
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Startup and initializaion

● Dynamo is provieded as a user-mode DLL

● Entry point: dynamo_exec

● Saves a snapshot of the application context to an internal 
data structure
– Application binary need not be perturbed in any way

● Swaps stack invironment
– Application’s runtime stack is not interfered
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● Definition: Trace
– Sequence of consecutively executing instructions from the native instruction stream

● Definition: Hot trace
– Sequence of instructions excuted many times, e.g. following the target of a backward branch (indicating a 

loop)

● Definition: Fragment
– Optimized hot trace

● Definition: Fragment cache
– The place where hot traces are linked together for reuse

● How are hot traces selected?

Fragment formation



Fragment formation: Hot trace selection

● Dynamo uses a speculative scheme, most recently executed tail 
(MRET), for hot-trace selection
1. A counter is associated with certain start-of-trace condition, e.g. a backward branch

2. The counter is incremented each time the associated start-of-trace condition occurs

3. When counter exceeds som threshold value, switch to code generation mode and 
record hot trace until end-of-trace condition is reached

● Counters are only maintained for potentail loop headers (low 
memory footprint)



Fragment formation: Hot trace optimization

● Hot trace is converted into low-level IR
● Fall-through direction of indirect conditional branches 

remain on the trace
– Transformed into direct conditional branch (less expensive)

● Direct unconditional branches are redundant and can be 
removed



Fragment formation: Hot trace optimization



Fragment formation: Hot trace optimization

● Most optimizations involve redundancy removal
– Remove or convert branches

– Remove conditional load operations

– Remove dead code

● Conventional optimizastions
– Copy propagation

– Constant propagation

– Strength reduction

– Loop invariant code motion

– Loop unrolling

● On-trace redundancies placed in off-trace compensation blocks at bottom of trace (more on this 
later)



Fragment formation: Emit fragment

● Emits optimized hot trace into fragment cache
● Two steps:

1. Emit generated code from fragment body IR

2. Emit unique fragment exit stubs for every exit and loop-back branch in 
trace

● Exit stubs transfer control from the Dynamo fragment 
cache to the Dynamo interpreter
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Fragment linking

● Linking involves patching block exit branches so that the 
target address becomes the entry of another fragment



Fragment linking
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Fragment linking

● Fragment linking is crusial for performance
● Prevents expensive exits from the fragment cache back to 

the intepreter
● Provides an opportunity to remove compensation blocks

– On-trace redundancies are sunk into off-trace compensation blocks



Fragment linking
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Fragment cache management

● Employs a pre-emptive flushing heuristic to periodically 
remove cold traces from the cache

● Essentially “free” since control is predominantly being 
spent in Dynamo anyway



Fragment cache management



Performance data

● SpecInt95 integer benchmarks and a commersial C++ 
code, deltablue 

● HP C/C++ compiler with +O2 optimization level
● Single processor HP PA-8000 workstation
● 150 K fragment cache



Performance data Speedup of +O2 optimized PA-8000 
binaries running on Dynamo, relative 
identical binaries running standalone.



Performance data



Performance data



Performance data



Conclusion

● Complements the static compiler
● Focuses on “run-time only” opportunities (that the compiler 

might miss)
● No user intervention
● Client-side performance delivery mechanism
● Provides significant benefits even on highly optimized 

binaries
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