
Dynamo: A Transparent Dynamic Optimization 
System

V. Bala, E. Duesterwald, and S. Banerjia, May 2000



Introduction: What is Dynamo?

● Run-time software optimizer
● Performs optimization on a native instruction stream
● Intruction stream can come from

– a statically compiled native binary; or

– a dynamically generated binary, e.g., by a JIT compiler

● Implemented entirely in software
● Provided as a user-mode DLL



Background: Why Dynamo?

● Greater degree of delayed binding due to OOP paradigms and modern software techniques
– Functions and methods are looked up at run-time

– Limits the size and scope available for static analysis by the compiler

● Modern software is shipped as collection DLLs (shared library)
– Parts of DLL referenced at run-time

– Static optimizations virtually impossible

● Generally, dynamic code generation environments make static optimization techniques impractical
● Reliance on independent software vendors to enable optimizations

– System vendors not able to control the keys that unlock thei performance potential

● Current trend of offloading complexity from hardware to the compiler (CISC to RISC to VLIW 
progression)





Overview

1. Startup and initialization

2. Fragment formation

3. Fragment linking

4. Fragment cache management

5. Signal handling



Startup and initializaion

● Dynamo is provieded as a user-mode DLL

● Entry point: dynamo_exec

● Saves a snapshot of the application context to an internal 
data structure
– Application binary need not be perturbed in any way

● Swaps stack invironment
– Application’s runtime stack is not interfered





Overview

1. Startup and initialization 

2. Fragment formation 

3. Fragment linking

4. Fragment cache management

5. Signal handling



● Definition: Trace
– Sequence of consecutively executing instructions from the native instruction stream

● Definition: Hot trace
– Sequence of instructions excuted many times, e.g. following the target of a backward branch (indicating a 

loop)

● Definition: Fragment
– Optimized hot trace

● Definition: Fragment cache
– The place where hot traces are linked together for reuse

● How are hot traces selected?

Fragment formation



Fragment formation: Hot trace selection

● Dynamo uses a speculative scheme, most recently executed tail 
(MRET), for hot-trace selection
1. A counter is associated with certain start-of-trace condition, e.g. a backward branch

2. The counter is incremented each time the associated start-of-trace condition occurs

3. When counter exceeds som threshold value, switch to code generation mode and 
record hot trace until end-of-trace condition is reached

● Counters are only maintained for potentail loop headers (low 
memory footprint)



Fragment formation: Hot trace optimization

● Hot trace is converted into low-level IR
● Fall-through direction of indirect conditional branches 

remain on the trace
– Transformed into direct conditional branch (less expensive)

● Direct unconditional branches are redundant and can be 
removed



Fragment formation: Hot trace optimization



Fragment formation: Hot trace optimization

● Most optimizations involve redundancy removal
– Remove or convert branches

– Remove conditional load operations

– Remove dead code

● Conventional optimizastions
– Copy propagation

– Constant propagation

– Strength reduction

– Loop invariant code motion

– Loop unrolling

● On-trace redundancies placed in off-trace compensation blocks at bottom of trace (more on this 
later)



Fragment formation: Emit fragment

● Emits optimized hot trace into fragment cache
● Two steps:

1. Emit generated code from fragment body IR

2. Emit unique fragment exit stubs for every exit and loop-back branch in 
trace

● Exit stubs transfer control from the Dynamo fragment 
cache to the Dynamo interpreter



Overview

1. Startup and initialization 

2. Fragment formation 

3. Fragment linking

4. Fragment cache management

5. Signal handling



Fragment linking

● Linking involves patching block exit branches so that the 
target address becomes the entry of another fragment



Fragment linking



Fragment linking



Fragment linking

● Fragment linking is crusial for performance
● Prevents expensive exits from the fragment cache back to 

the intepreter
● Provides an opportunity to remove compensation blocks

– On-trace redundancies are sunk into off-trace compensation blocks



Fragment linking



Overview

1. Startup and initialization 

2. Fragment formation 

3. Fragment linking

4. Fragment cache management

5. Signal handling



Fragment cache management

● Employs a pre-emptive flushing heuristic to periodically 
remove cold traces from the cache

● Essentially “free” since control is predominantly being 
spent in Dynamo anyway



Fragment cache management



Performance data

● SpecInt95 integer benchmarks and a commersial C++ 
code, deltablue 

● HP C/C++ compiler with +O2 optimization level
● Single processor HP PA-8000 workstation
● 150 K fragment cache



Performance data Speedup of +O2 optimized PA-8000 
binaries running on Dynamo, relative 
identical binaries running standalone.



Performance data



Performance data



Performance data



Conclusion

● Complements the static compiler
● Focuses on “run-time only” opportunities (that the compiler 

might miss)
● No user intervention
● Client-side performance delivery mechanism
● Provides significant benefits even on highly optimized 

binaries


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

