
Scripting vs. Emergence
Martin Hafskjold Thoresen

What vs. What?
- Approaches to game design

- How is the game logic defined?

- Two approaches:

- Scripting

- Emergence

Scripting
- Predefined paths

- Relies on the designers ideas of what is fun

- Prone to inconsistencies

- Full creative control

- “Emulations” or “specific” system design

Emergence
«Fremvekst»

- Instead of hard-coding, make general rules

- Design types of objects and interactions

- Bullets break windows

- Consistency

- “Simulation”, or “systemic” system design

- The game emerges from the design

- Complex behaviour from simple rules

Developer Considerations
- Effort in Designing, Implementing and Testing

- How do we program the behaviour we want?

- Effort in Modifying and extending

- How hard is it to change some behaviour?

- Level of Creative Control

- To what degree is it possible to control the system?

- Uncertainty and Quality Assurance

- How hard is it to find and fix bugs?

- Ease of Feedback and Direction

- How can we help the player in accomplishing their tasks?

Developer Considerations - Scripting
- Effort in Designing, Implementing and Testing

- Must be done manually. Time consuming

- Effort in Modifying and extending

- Explicit relationships with game elements for interactions

- Level of Creative Control

- Full control.

- Uncertainty and Quality Assurance

- No uncertainty or unexpected events. QA requires extensive testing

- Ease of Feedback and Direction

- Easy to give feedback

Developer Considerations - Emergence
- Effort in Designing, Implementing and Testing

- Bullet breaks window => projectiles break glass

- Considerable initial effort

- Effort in Modifying and extending

- Simple to extend, due to its general nature

- Level of Creative Control

- Loss of control. Difficult to set up narratives

- Uncertainty and Quality Assurance

- Uncertain, due to combinatorics. Requires extensive testing

- Ease of Feedback and Direction

- A greater need. Hard

Player Considerations
- Uphold suspension of disbelief

- Consistency and intuitiveness

- Window breaking

- Crate stacking

- Exploding barrels

- Visually similar, functionally different

- Linearity, or low branching

- Replayability

- What the player wants to do --- what the designer wants to do

Techniques in Games - Scripting
- Finite State Machines (FSMs)

- By far the most popular

- Scales poorly

- Difficult maintenance

- Scripting Languages

- Simpler development

- Artists and designers can script

- Modding

Techniques in Games - Emergence
- Flocking

- Simulate group behavior

- Boid

- Separation: avoid crowding

- Alignment: steer the boid toward average

heading of local flockmates

- Cohesion: steer the boid towards average

position of local flockmates

- Cellular Automata (CA)

- Grid of states, transition rule

- Discrete time steps

- Useful for fire, explosion, smoke, etc.

Techniques in Games - Emergence (2)
- Neural Networks (NN)

- Brain inspired machine learning

- Connected network of units and weights

- Learns complex behaviour by training

- Offline or online training?

- Evolutionary Algorithms (EA)

- Evolution inspired

- Merge and mutate

- Parameter tuning: representation, population size, generations, fitness function, etc

- Robust for large search spaces

- Expensive

Where does this leave us?
- Scripting and Emergence are two extremes

- Both have benefits and drawbacks

- Is a sandbox/simulation even a game?

- Facilitate emergent interactions, script to

 set boundaries for story and game objectives

