
Game Development: Harder
Than You Think

Presented by Kim Long Vu and Sondre Slåttedal Havellen

Difficulty in game development
● Past times: producing code that runs quickly
● Now(2004): getting code to produce an end result that bears some semblance

to the desired functionality.
○ choosing the right high-level algorithm

● 2 main problems:
○ Problems due to highly domain-specific requirements
○ Problems due to overall project size/complexity

Problems due to overall project size/complexity

Tools
● Microsoft Visual Studio

○ Optimized for visual studio and c# applications
○ Useful for applications that has :heavy use of COM

objects or many windows with variegated UI elements
○ Need to augment the content packages with our own

plugins and other tools

● What developers actually need
○ make the system compile programs quickly
○ generate efficient code
○ produce reasonable error messages for code that uses

C++ templates.
○ a fast and robust system for the games assets, 3d

models, sound effects, etc

Workflow
● Compile, edit and debug
● Build time increases because of dependencies

○ Causes a team to put a lot of work into refactoring their code.
○ Can result in reconstruction of the whole project
○ Solution: architect the entire code base to minimize dependencies.

● Take up to half an hour to compile
● Some solutions

○ “edit and continue” feature with Visual C++
○ third-party tools to distribute compilations across many machines.

● Unavoidable start-up time

Multiplatform Development
● Build the game for all build types (debug, release) for all

targeted platforms(PC,Playstation,Xbox)
● This can cause compile-time or runtime error, disrupting

the work of the rest of the programming team
● In order to avoid these problems the programmer has to

recompile between two or five times.
● Build Masters
● The results is that a developer has a lot of barriers

Leveraging third-party products
● Audio low-level
● Rendering low-level
● Scene management
● Collision detection and physics
● Networking low-level
● Skeletal animation and morph

targets
● Persistent object storage
● Scripting languages

● Difficulty integrating these
modules

○ May require domain-specific
knowledge

○ Wrapper layers
○ May fail when problem it solves is

smaller than the amount of work the
team has to do in order to implement
it

● Cost/benefit analysis

Licencing an entire engine
● Commercial engines

○ Unity
○ Unreal
○ CryEngine

● Proprietary engines
○ Frostbite
○ id Tech

● Pricing concerns
○ Article say this is expensive, but it's not really the case

anymore
○ For example

■ Unity: Price per month per seat ($125 * num
people * num months)

■ Unreal: 5% royalty on gross product revenue after
the first $3,000

■ So let's say you make $1m with 5 people over 1
year, that's $7,500 for Unity and $50,000 for
Unreal

Highly domain-specific requirements
● Script code vs. gameplay code vs. engine code
● Engine code

○ High requirements for performance and quality
○ Mathematical knowledge

■ Linear algebra
■ Rendering / graphics
■ Physics simulation

○ Algorithmic knowledge
■ Spatial partitioning, intersection and clipping of geometric primitives etc.
■ Design patterns

○ Realtime concerns

Further problems and concerns
● Depth of simulation

○ Integrating quantities over time using numerical methods
○ Skipping events (tunneling) when simulation tics are too long
○ n^2 problem => culling

● Profiling
○ "Unfortunately, there are no good profilers for games" => not really true anymore

● Increased technical complexity => Increased risk

Conclusion
Games are hard

