Game Development: Harder
Than You Think

Presented by Kim Long Vu and Sondre Slattedal Havellen

Difficulty in game development

e Past times: producing code that runs quickly
e Now(2004): getting code to produce an end result that bears some semblance
to the desired functionality.

O choosing the right high-level algorithm

e 2 main problems:
o Problems due to highly domain-specific requirements
o Problems due to overall project size/complexity

Problems due to overall project size/complexity

server main/misc. client main/misc
nects to connects to
nearly everything patch/update network network nearly everything
in server in server

server low-level prediction/
and shared orrection
network col O] [— —
scene management == it client gameplay
I 1 .I
- I |
gy ol | R
sound:

—
e])

main/misc. simulation server

file 170 - gameplay code
L 1} ﬂ

fast 2D graphics

rsistent
B e spatial partition
and query

persistent
store
glue

database analysis
and recovery

world construction ry and ysicall client software
and layout update publishing
creation

Tools

e Microsoft Visual Studio P ——"

e \What developers actually need

(@)

(@)

(@)

e EZ2(A%%%.

Optimized for visual studio and c# applications

Useful for applications that has :heavy use of COM
objects or many windows with variegated Ul elements
Need to augment the content packages with our own
plugins and other tools

I FEHP| L R@[0 - -8B) vy

cne comeness | [e]y) [5

2[R roperties [@ Dy
ch1

amic Help |
[Iws]

make the system compile programs quickly

generate efficient code

produce reasonable error messages for code that uses
C++ templates.

a fast and robust system for the games assets, 3d
models, sound effects, etc

Workflow

e Compile, edit and debug

e Build time increases because of dependencies

o Causes a team to put a lot of work into refactoring their code.
o Can result in reconstruction of the whole project
o Solution: architect the entire code base to minimize dependencies.

e Take up to half an hour to compile
e Some solutions

o “edit and continue” feature with Visual C++
o third-party tools to distribute compilations across many machines.

e Unavoidable start-up time

Multiplatform Development

Build the game for all build types (debug, release) for all
targeted platforms(PC,Playstation,Xbox)

This can cause compile-time or runtime error, disrupting
the work of the rest of the programming team

In order to avoid these problems the programmer has to
recompile between two or five times.

Build Masters

The results is that a developer has a lot of barriers

Leveraging third-party products

e Audio low-level e Difficulty integrating these
e Rendering low-level modules
e Scene management o May require domain-specific
e Collision detection and physics knowledge
_ o Wrapper layers
e Networking low-level o May fail when problem it solves is
e Skeletal animation and morph smaller than the amount of work the
targets team has to do in order to implement
: : it
e Persistent object storage

e e Cost/benefit analysis
e Scripting languages

\ | ¢
]] [] ‘
Licencing an entire engine \@¢ -
\‘.‘(%{
e Commercial engines “k'
g FROSTBITE 3
o Unity
o Unreal e Pricing concerns
o CryEngine o Article say this is expensive, but it's not really the case
e Proprietary engines anymore
o Frostbite o For example
o id Tech m Unity: Price per month per seat ($125 * num

people * num months)
m Unreal: 5% royalty on gross product revenue after

e, the first $3,000
() |)) m So let's say you make $1m with 5 people over 1
/ year, that's $7,500 for Unity and $50,000 for

- _RY= =3 Unreal
unlty UI:INRGEEAL CRY=NCGIN= 3

Highly domain-specific requirements

e Script code vs. gameplay code vs. engine code

e Engine code

o High requirements for performance and quality

o Mathematical knowledge
m Linear algebra
m Rendering / graphics
m Physics simulation

o Algorithmic knowledge
m Spatial partitioning, intersection and clipping of geometric primitives etc.
m Design patterns

o Realtime concerns

Further problems and concerns

e Depth of simulation
o Integrating quantities over time using numerical methods
o Skipping events (tunneling) when simulation tics are too long
o n"2 problem => culling

e Profiling

o "Unfortunately, there are no good profilers for games" => not really true anymore

e Increased technical complexity => Increased risk

Conclusion

Games are hard

