TDT4127 Programming and Numerics

 Week 46/47Repetition and exam preparation

Next week

- Questions about the exam:
- Friday November 23, 16:15-17:00
- Bring your questions, Guttorm and I will bring our answers
- Afterward, 17:00-18:00: Final exam prep

Today

- Finalize adaptive Simpson's method
- Going through implementation
- Repetition
- Summarize what we've learned
- Go through auditorium exercise 2
- Exam preparation
- Question: 15 minute break at 17:00?

Implementing Adaptive Simpson's rule

$S(a, b)$ denotes Simpson's on the integral from a to b.
To approximate the integral over $[a, b]$ with error $<\epsilon$:

1. Compute $S(a, b)$.
2. Compute $S(a, c)$ and $S(b, c)$.
3. Estimate the error in $S(a, c)+S(b, c)$:

$$
\text { if }|S(a, b)-(S(a, c)+S(b, c))|<15 * \epsilon \text { : } \quad \begin{aligned}
& \text { return } \frac{16}{15}(S(a, c)+S(b, c))-\frac{1}{15} S(a, b)
\end{aligned}
$$

else:
estimate the integrals over [a, c] and $[c, b]$ with error less than $\epsilon / 2$ return the two estimates added together

Repetition

Week 35/36: Number representation

- Computers mainly use two storage formats for numbers: Integers and floating point numbers (floats)
- Integers: Precise representations of whole numbers
- Used for counting, numbering etc.
- Format: Binary numbers. 8-bit example:

$$
10010101=1^{*} 128+0^{*} 64+0^{*} 32+1^{*} 16+0^{*} 8+1^{*} 4+0^{*} 2+1^{*} 1=149
$$

- More bits \Leftrightarrow can represent larger numbers
- First bit may represent the sign (0 means negative, 1 positive)

Week 35/36: Number representation

- Floating point numbers: Imprecise versions of real numbers
- Used in calculations requiring decimal points
- Format: Scientific notation in base 2 (totallsystemet)

$$
a=(-1)^{s g} \times 2^{e-b} \times 1 . s_{1} s_{2} s_{3} \ldots s_{K}
$$

- sg: sign, e: exponent, b: bias, 1. $s_{1} s_{2} s_{3} \ldots s_{K}$: significand/mantissa
- Due to imprecision, be careful with floating point operations:
- $a \pm b$ is problematic if a and b are very different in size
- $a \times b$ and a / b are safe
- $a==b$ is very unsafe and should be avoided (check $|a-b|<\epsilon$ instead)

Week 36/38/39: Equation solvers

- Solving $f(x)=g(x) \Leftrightarrow$ solving $h(x)=f(x)-g(x)=0$
- Therefore the algorithms are based on solving $h(x)=0$.
- Three methods: bisection, secant and Newton's
- Newton uses derivative. Secant and bisection: derivative free
- Newton is faster than secant which is faster than bisection
- Bisection has less rigid restrictions than secant which has less rigid restrictions than Newton

Property type	Newton's method	Secant method	Bisection method
Continuity	$f^{\prime \prime}$	f^{\prime}	f
Nonzero	$f^{\prime \prime}(z) \neq 0, f^{\prime}(x) \neq 0$	$f^{\prime}(z) \neq 0$	None
Extra bounds	$\frac{\left\|f^{\prime \prime}(x)\right\|}{\left\|f^{\prime}(y)\right\|} \leq A$	None	None
Starting point	Close enough	Close enough	$[a, b]$ encloses z

Algorithm: Bisection method

- Type: Equation solver. Finds zeroes: $f(x)=0$
- Initialization: $[a, b]$ such that $f(a)$ and $f(b)$ have different signs $(f(a) f(b)<0)$, a minimum width ϵ.
- Mathematically: Halve the interval, but ensure $f(a) f(b)<0$
- Pseudoalgorithm:

```
while abs(a-b) > epsilon:
    \(c=(a+b) / 2\)
    if \(f(a)\) and \(f(c)\) have the same sign:
        \(a=c\)
    else:
        \(b=c\)
    if \(f(c)\) is 0 :
        return c
return c
```


Algorithm: Newton's method

- Type: Equation solver. Finds zeroes: $f(x)=0$
- Initialization: Starting value x_{0}, tolerances ϵ, δ.
- Mathematically: $x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
- Algorithm:

```
k = 0
diff = delta + 1
while f(x, ) > epsilon and diff > delta
        x
        diff = x (k+1 - x 
        k = k+1
    return }\mp@subsup{x}{k+1}{
```

- Note: Requires the derivative $f^{\prime}(x)$

Algorithm: Secant method

- Type: Equation solver. Finds zeroes: $f(x)=0$
- Initialization: Starting values x_{0} and x_{1}, tolerances ϵ, δ.
- Mathematically: $x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}$
- Algorithm:

$$
\begin{aligned}
& \mathrm{k}=1 \\
& \text { while } \mathrm{f}\left(x_{k}\right)>\text { epsilon and } \operatorname{abs}\left(x_{k}-x_{k-1}\right)>\text { delta } \\
& \qquad \begin{array}{l}
x_{k+1}=x_{k}-\mathrm{f}\left(x_{k}\right)\left(x_{k}-x_{k-1}\right) /\left(\mathrm{f}\left(x_{k}\right)-\mathrm{f}\left(x_{k-1}\right)\right) \\
\mathrm{k}=\mathrm{k}+1 \\
\text { return } x_{k+1}
\end{array}
\end{aligned}
$$

- Note: Can be seen as a derivative-free version of Newton's

Week 37/45: Numerical integration

- Task: Compute a definite integral $\int_{a}^{b} f(x) \mathrm{d} x$
- Three methods: Midpoint, trapezoidal, Simpson's rule
- Based on: constant, linear and quadratic approximations of f.
- Simpson's rule is a bit more work but also more accurate
- Composite methods: Split $[a, b]$ into N parts, integrate each part separately, add together.
- Error analysis, $M_{2}=\max _{a \leq y \leq b} f^{\prime \prime}(y), M_{4}=\max _{a \leq y \leq b} f^{\prime \prime \prime \prime}(y)$:

$$
E_{M P} \leq \frac{(b-a)^{3}}{24 N^{2}} M_{2}, \quad E_{T R} \leq \frac{(b-a)^{3}}{12 N^{2}} M_{2}, \quad E_{S I} \leq \frac{(b-a)^{5}}{2880 N^{4}} M_{4}
$$

- Adaptive Simpson's rule uses error analysis/recursion
- More efficient than composite methods, guarantees error

Algorithm: Composite Midpoint rule

- Type: Integral computing. Finds $\int_{a}^{b} f(x) \mathrm{d} x$
- Initialization: [a, b], number of intervals N
- Mathematically:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx h \sum_{k=0}^{N-1} f\left(x_{k}+\frac{h}{2}\right), \quad h=\frac{a-b}{N}, \quad x_{k}=a+k h
$$

- Algorithm:

$$
\begin{aligned}
& \mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{N} \\
& \text { totalSum }=0 \\
& \text { for } \mathrm{k} \text { in range }(0, \mathrm{~N}) \\
& \quad \mathrm{x} k=\mathrm{k}+\mathrm{k} * \mathrm{~h} \\
& \quad \text { totalSum }+=\mathrm{f}(\mathrm{x} \mathrm{k}+\mathrm{h} / 2) \\
& \text { totalSum }=\mathrm{h} * \text { totalSum } \\
& \text { return totalSum }
\end{aligned}
$$

Algorithm: Composite Trapezoidal rule

- Type: Integral computing. Finds $\int_{a}^{b} f(x) \mathrm{d} x$
- Initialization: $[a, b]$, number of intervals N
- Mathematically:
$\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{k=1}^{N-1} f\left(x_{k}\right)+f\left(x_{N}\right)\right), \quad h=\frac{a-b}{N}, x_{k}=a+k h$
- Algorithm:

$$
h=(b-a) / N
$$

totalSum $=f(a)$
for k in range(1,N)

$$
\mathrm{x} _\mathrm{k}=\mathrm{a}+\mathrm{k} * \mathrm{~h}
$$

$$
\text { tōtalSum }+=2 * f\left(x_{-} k\right)
$$

totalSum $+=\mathrm{f}(\mathrm{b})$
totalSum $=h / 2 *$ totalSum
return totalSum

Algorithm: Composite Simpson's rule

- Type: Integral computing. Finds $\int_{a}^{b} f(x) \mathrm{d} x$
- Initialization: $[a, b]$, number of intervals N
- Mathematically:

$$
\begin{gathered}
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right) \\
h=\frac{a-b}{2 N}, \quad x_{k}=a+k h
\end{gathered}
$$

- Algorithm:

```
h = (b-a)/(2*N)
totalSum = f(a)
for k in range(1,2N)
        x_k = a + k*h
        if k % 2 is 1: # Odd index
        totalSum += 4*f(x_k)
    else: # Even index
        totalsum += 2*f(x_k)
totalSum += f(b)
totalSum = h/3*totalSum
return totalSum
```


Algorithm: Adaptive Simpson's rule

- Type: Integral computing. Finds $\int_{a}^{b} f(x) \mathrm{d} x$
- Initialization: $[a, b]$, error tolerance ϵ
- Algorithm:

```
def ad_Simpson(f,a,b,eps)
    whole = Simpson(f,a,b)
    c = (a+b)/2
    left = Simpson(f,a,c)
    right = Simpson(f,b,c)
    if abs(whole - (left + right)) < 15*eps: # Error OK
    return 16/15*(left + right) - 1/15*whole # Extrapolation
    else: # Error not OK, split interval in two
    return ad_Simpson(f,a,c,eps/2) + ad_Simpson(f,c,b,eps/2)
```


Week 40/41: Gaussian elimination

- Task: Solve a matrix-vector system $A x=b$
- The method: Gaussian elimination + back substitution
- GE is a direct solver: Running the algorithm gives the answer, no iterations or error estimates
- Roundoff errors are minimized by partial pivoting
- Swap rows such that the pivot element is maximal in its column
- After Gaussian elimination, use back substitution to find the answer
- Can be implemented in-place; don't need to create new matrices, saves space

Algorithm: Gaussian elimination with partial pivoting

- Type: Linear equation solver. Solves: $A x=b$
- Initialization: $N \times(N+1)$ augmented matrix M
- Pseudoalgorithm:

```
row = 0, col = 0
while (row < N-1 and col < N):
    ind_row_max = get_max(M,row,col) # Maximum in col
    if w_max][col] is 0: # Pivot element is 0
        col += 1 # No nonzero element in pivot column
    else:
        swap(M[row_ind],M[max_row_ind]) # Swap rows
        row_reduce(M,row,col) # Zero out rows below
        row += 1, col += 1
x = back_substitute(M) # Back substitution
```


Week 42: Newton's method in n-D

- Task: Solve $f(x)=0$
- Very similar to the 1-D version, uses the Jacobian matrix

$$
J_{f}(y)=\left[\begin{array}{cccc}
\frac{\partial f_{0}}{\partial x_{0}}(y) & \frac{\partial f_{0}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{0}}{\partial x_{n}}(y) \\
\frac{\partial f_{1}}{\partial x_{0}}(y) & \frac{\partial f_{1}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(y) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{0}}(y) & \frac{\partial f_{n}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(y)
\end{array}\right]
$$

1. Solve the linear system $J_{f}\left(x^{k}\right) \mathbf{z}=-\boldsymbol{f}\left(\boldsymbol{x}^{k}\right)$
2. Compute $x^{k+1}=x^{k}+z$

- Stopping conditions must take all dimensions into account
- Example: $\left|f_{0}\left(x^{k}\right)\right|<\epsilon$ and $\left|f_{1}\left(x^{k}\right)\right|<\epsilon \ldots$ and $\left|f_{n}\left(x^{k}\right)\right|<\epsilon$, and/or: $\left|x_{0}^{k}-x_{0}^{k-1}\right|<\delta$ and \ldots and $\left|x_{n}^{k}-x_{n}^{k-1}\right|<\delta$.

Algorithm: Newton's method in n-D

- Type: Equation solver. Finds zeroes: $f(x)=0$
- Initialization: x^{0}, tolerances ϵ, δ.
- Mathematically:
- Solve the linear system $J_{f}\left(x^{k}\right) \mathbf{z}=-\boldsymbol{f}\left(x^{k}\right)$
- Compute $x^{k+1}=x^{k}+z$
- Pseudoalgorithm:

```
k = 0
while <stopping conditions are not satisfied>
    compute }\mp@subsup{J}{f}{}(\mp@subsup{x}{}{k}),f(\mp@subsup{x}{}{k}
    solve the linear system }\mp@subsup{J}{f}{}(\mp@subsup{x}{}{k})z=-f(\mp@subsup{x}{}{k}
    x k+1}=\mp@subsup{x}{}{k}+
    k += 1
return }\mp@subsup{x}{}{k
```


Week 43/44: Methods for solving ODEs

- Task: Solve the ODE $\dot{x}(t)=f(x, t)$; solution is $x(t)$
- Numerically: find a series $\left\{x^{k}\right\}_{k=0}^{N}, x^{k} \approx x(k h)$
- Formulation of methods is the same for 1-D and n-D
- Methods can be explicit or implicit
- Explicit: x^{k} can be computed directly (explicit Euler, Heun's)
- Implicit: x^{k} is computed by solving an equation (implicit Euler)
- Methods can have several stages
- Combine several estimates of the slope to get a better fit.
- Heun's method is a 2-stage method
- Stability
- A method is unstable if $x^{k} \rightarrow \infty$ as $\mathrm{k} \rightarrow \infty$ when applied to the test equation

$$
f(x, t)=-\lambda x, \quad \lambda \geq 0
$$

- Implicit methods are often more stable but slower than explicit methods
- Convergence order
- A method is of order p if $\left|x^{k}-x(k h)\right|<C_{k} h^{p}$
- An order p method improves its answer by a factor 2^{p} when $h \rightarrow h / 2$
- Explicit/Implicit Euler are order 1, Heun's method order 2

Algorithm: Explicit Euler

- Type: ODE solvers. $\dot{x}(t)=f(x, t), x(0)=x^{0}$
- Initialization: x^{0}, T, N
- Mathematically: $x^{j+1}=x^{j}+h f\left(x^{j}, t_{j}\right)$
- Pseudoalgorithm:

$$
\begin{aligned}
& \mathrm{x} _ \text {list }=\left[x^{0}\right] \\
& \mathrm{x}=x^{0} \\
& \mathrm{~h}=\mathrm{T} / \mathrm{N} \\
& \text { for } \mathrm{j} \text { in range }(\mathrm{N}) \\
& \quad \mathrm{x}=\mathrm{x}+\mathrm{hf}(\mathrm{x}, \mathrm{jh}) \\
& \mathrm{x} \text { _list.append }(\mathrm{x}) \\
& \text { return } \mathrm{x} \text { _list }
\end{aligned}
$$

Algorithm: Implicit Euler

- Type: ODE solvers. $\dot{x}(t)=f(x, t), x(0)=x^{0}$
- Initialization: x^{0}, T, N
- Mathematically: $x^{j+1}=x^{j}+h f\left(x^{j+1}, t_{j+1}\right)$
- Pseudoalgorithm:

```
x_list \(=\left[x^{0}\right]\)
\(\mathrm{x}=x^{0}\)
\(\mathrm{h}=\mathrm{T} / \mathrm{N}\)
for \(j\) in range(N)
        solve the equation \(y=x+h f(y,(j+1) h)\)
        \(\mathrm{x}=\mathrm{y}\)
        x_list.append(x)
return x_list
```


Algorithm: Heun's method

- Type: ODE solvers. $\dot{x}(t)=f(x, t), x(0)=x^{0}$
- Initialization: x^{0}, T, N
- Mathematically: $s^{j+1}=x^{j}+h f\left(x^{j}, t_{j}\right)$

$$
x^{j+1}=x^{j}+\frac{h}{2}\left(f\left(x^{j}, t_{j}\right)+f\left(s^{j+1}, t_{j+1}\right)\right)
$$

- Pseudoalgorithm:

```
x_list \(=\left[x^{0}\right]\)
\(\mathrm{x}=x^{0}\)
\(\mathrm{h}=\mathrm{T} / \mathrm{N}\)
for \(j\) in range(N)
        \(s=x+h f(x, j h)\)
        \(x=x+h / 2 *(f(x, j h)+f(s,(j+1) h))\)
        x_list.append(x)
return x_list
```


Week 41: Plotting

- Include matplotlib using the command
import matplotlib.pyplot as plt
- Given lists x and y of equal length, we plot the points ($\mathrm{x}[\mathrm{i}], \mathrm{y}[\mathrm{i}]$) with the command plt.plot (x, y)
- Same as when drawing a graph from hand if you have no idea how it looks: put dots on the coordinates and draw lines between
- To see the figure, use plt. show ()
\#Inform about label on the y axis
plt.ylabel('some numbers')
\#Axis range: [x_min, x_max, y_min, y_max]
plt.axis([0,4,0,16])

Plotting styles

- The default behaviour of plt. plot () is to connect the points with lines
- We can change this using additional arguments after the x / y coordinates
- For example, to plot y over the x points as red circles:
plt.plot(x,y,'ro')
- To plot y over the x points as green triangles:

$$
\text { plt.plot(x,y,' } \left.\mathrm{g}^{\wedge \prime}\right)
$$

Plotting several graphs in one figure

- If we want to generate several graphs, plot all of them first using plt.plot(), then use plt.show()

```
#Import plotting library
import matplotlib.pyplot as plt
x = ...
y1 = f(x)
y2 = g(x)
plt.plot(x,y1)
plt.plot(x,y2)
plt.show()
```


Questions?

