TDT4127 Programming and Numerics
Week 46/47

Repetition and exam preparation

Kunnskap for en bedre verden

®@NTNU

Next week

* Questions about the exam:
— Friday November 23, 16:15-17:00
— Bring your questions, Guttorm and | will bring our answers
— Afterward, 17:00 — 18:00: Final exam prep

2 ®@NTNU

Today

Finalize adaptive Simpson’s method
— Going through implementation
Repetition

— Summarize what we've learned

— Go through auditorium exercise 2

« Exam preparation

Question: 15 minute break at 17:007?

3 ®@NTNU

Implementing Adaptive Simpson'’s rule

S(a, b) denotes Simpson’s on the integral from a to b.
To approximate the integral over [a, b] with error < e€:

1. Compute S(a, b).
2. Compute S(a,c) and S(b, c).
3. Estimate the errorin S(a,c) + S(b, c):
if |S(a, b) — (S(a, c) + S(b, c))| < 15 * €:
return = (S(a,) + S(b,¢)) — =S(a, b)

else:

estimate the integrals over [a, c] and [c, b] with error less than €/2
return the two estimates added together

4 ®@NTNU

Repetition

Week 35/36: Number representation

« Computers mainly use two storage formats for numbers:
Integers and floating point numbers (floats)

* Integers: Precise representations of whole numbers
— Used for counting, numbering etc.

— Format: Binary numbers. 8-bit example:
10010101 = 1*128 + 0* 64 + 0*32 + 1*16 + 0*8 + 1*4 + 0*2 + 1*1 = 149

— More bits & can represent larger numbers
— First bit may represent the sign (0 means negative, 1 positive)

6 ®@NTNU

Week 35/36: Number representation

* Floating point numbers: Imprecise versions of real
numbers
— Used in calculations requiring decimal points

— Format: Scientific notation in base 2 (totallsystemet)
a=(-1)"9%2°"Px1.5,5,55 ...5x

* sg:sign, e:exponent, b: bias, 1.s;s,5s5 ...5g: significand/mantissa
— Due to imprecision, be careful with floating point operations:

* a + bis problematic if a and b are very different in size

* axband a/b are safe

* a == b is very unsafe and should be avoided (check |a — b| <€
instead)

7 ®@NTNU

Week 36/38/39: Equation solvers

« Solving f(x) = g(x) © solving h(x) = f(x) —glx) =0
— Therefore the algorithms are based on solving h(x) = 0.
 Three methods: bisection, secant and Newton’s
— Newton uses derivative. Secant and bisection: derivative free
— Newton is faster than secant which is faster than bisection

— Bisection has less rigid restrictions than secant which has less
rigid restrictions than Newton

Property type Newton’s method Secant method | Bisection method

Continuity

Nonzero f'"(z) + O,f (x) #0 f' (Z) * 0 None

Extra bounds | (x)] oy None None
'Ol

Starting point Close enough Close enough [a, b]encloses z

8 ®@NTNU

Algorithm: Bisection method

« Type: Equation solver. Finds zeroes: f(x) = 0

* Initialization: [a, b| such that f(a) and f(b) have different
signs (f(a)f(b) < 0), a minimum width e.

- Mathematically: Halve the interval, but ensure f(a)f(b) < 0

 Pseudoalgorithm:
while abs(a-b) > epsilon:
c = (atb)/2
1f f(a) and f(c) have the same sign:
a = c
else:
b =c
1if f(c) 1is O:
return c
return c

9 ®@NTNU

Algorithm: Newton’s method

« Type: Equation solver. Finds zeroes: f(x) = 0
+ Initialization: Starting value x,, tolerances ¢, 6.
« Mathematically: x;.1 = x, — f(xx)/f (xx)
« Algorithm:
k =0
diff = delta + 1
while f(xr) > epsilon and diff > delta
Xp+1 = X — E(xg)/£7 (xg)
diff = Xk+1 — Xk
k = k+1

return Xg4q

* Note: Requires the derivative f'(x)

Algorithm: Secant method

« Type: Equation solver. Finds zeroes: f(x) = 0
* Initialization: Starting values x, and x,, tolerances ¢, 6.

. . . — — ad mad.
Mathematically: x;.,1 = xi = f (i) -3

« Algorithm:
k =1
while f(xp) > epsilon and abs(x;, — Xx_q1) > delta

X1 = X — E(xp) (X = Xp—1) /(E(x) — £(Xk-1))
k = k+1

return Xp4q

* Note: Can be seen as a derivative-free version of Newton’s

Week 37/45: Numerical integration

« Task: Compute a definite integral fff(x)dx

 Three methods: Midpoint, trapezoidal, Simpson’s rule
— Based on: constant, linear and quadratic approximations of f.
— Simpson’s rule is a bit more work but also more accurate

« Composite methods: Split [a, b] into N parts, integrate each

part separately, add together.
« Error analysis, M, = max f''(y),M, = max f""'(y):
as<y<b asy<b
(b —a)® (b —a)® (b —a)®

Emp = 24N2 Mz, Erg = 12N?2 Mz, ESIS2880N4M4

« Adaptive Simpson’s rule uses error analysis/recursion
— More efficient than composite methods, guarantees error

Algorithm: Composite Midpoint rule

 Type: Integral computing. Finds f;f(x)dx
+ Initialization: [a, b], number of intervals N
 Mathematically:

b — h a—b
Jf(x)dxzhz:f(xk+§), h=""", me=a+kh
a k=0

« Algorithm:
h = (b-a)/N
totalSum = 0

for k in range(0,N)

x k = a + k*h

totalSum += f(x k + h/2)
totalSum = h*totalSum
return totalSum

Algorithm: Composite Trapezoidal rule

- Type: Integral computing. Finds fff(x)dx
 Initialization: [a, b], number of intervals N
* Mathematically:

b h - a—>b
| reax ~ 2<f(xo) +2) [0+ f(xN)>, h="2, xe=a+ kh
“ k=1

N

« Algorithm:
h = (b-a)/N
totalSum = f(a)
for k in range(1l,N)
x k = a + k*h
totalSum += 2*f(x k)
totalSum += f(b)
totalSum = h/2*totalSum
return totalSum

Algorithm: Composite Simpson’s rule

* Type: Integral computing. Finds f;f(x)dx
« Initialization: [a, b], number of intervals N
 Mathematically:

b
[FO = 5 (700D + 47 G 27 Ce) 47 Ge) 4 2 Gy 2) + 4 Cea) + Ci)
a—>b

h—W, xk=a+kh

« Algorithm:
h = (b-a)/(2*N)
totalSum = f(a)
for k in range(1l,2N)
x k = a + k*h
if k $ 2 is 1: # 0dd index
totalSum += 4*f(x k)
else: # Even index
totalsum += 2*f(x k)
totalSum += f(b)
totalSum = h/3*totalSum

return totalSum

Algorithm: Adaptive Simpson’s rule

« Type: Integral computing. Finds f(ff(x)dx
* Initialization: [a, b], error tolerance €
« Algorithm:

def ad _Simpson(f,a,b,eps)
whole = Simpson(f,a,b)
c = (atb)/2
left = Simpson(f,a,c)
right = Simpson(f,b,c)
1f abs(whole — (left + right)) < 15*eps: # Error OK
return 16/15*(left + right) — 1/15*whole # Extrapolation
else: # Error not OK, split interval in two

return ad_Simpson(f,a,c,eps/2) + ad Simpson(f,c,b,eps/2)

Week 40/41: Gaussian elimination

« Task: Solve a matrix-vector system Ax = b
« The method: Gaussian elimination + back substitution

« GE is a direct solver: Running the algorithm gives the
answer, no iterations or error estimates

* Roundoff errors are minimized by partial pivoting
— Swap rows such that the pivot element is maximal in its column

o After Gaussian elimination, use back substitution to
find the answer

« Can be implemented in-place; don’'t need to create new
matrices, saves space

Algorithm: Gaussian elimination with
partial pivoting

« Type: Linear equation solver. Solves: Ax = b

 Initialization: Nx(N + 1) augmented matrix M

* Pseudoalgorithm:
row = 0, col =0

while (row < N-1 and col < N):

ind row max = get max(M,row,col) # Maximum in col
1f w max][col] is 0: # Pivot element is 0
col += 1

else:

No nonzero element in pivot column

swap(M[row ind],M[max row ind]) # Swap rows

row reduce(M,row,col) # Zero out rows below
row += 1, col +=1

x = back substitute(M) # Back substitution

Week 42: Newton’s method in n-D

« Task: Solve f(x) =0
* Very similar to the 1-D version, uses the Jacobian matrix

0o dfo dfo |

dx,) %,) - o,)
df dfi dfi

J; () = a()’) a—xl()’) a()’)
of, _ of, of

E()’) a—xl()’) E()’)

1. Solve the linear system J;(x*)z = —f(x")
2. Compute x*1 = x* 4 z

« Stopping conditions must take all dimensions into account
— Example: |fo(x%)| < e and |f;(xF)| < € ... and |f,,(xF)| <€,
and/or: |x§f —xf~| < §and ... and |xf — xE7Y < 6.

Algorithm: Newton’s method in n-D

« Type: Equation solver. Finds zeroes: f(x) = 0
- Initialization: x°, tolerances ¢, 6.
 Mathematically:
— Solve the linear system J¢(x*)z = —f(x*)
— Compute x*1 = x* 4+ z
* Pseudoalgorithm:
k =0
while <stopping conditions are not satisfied>
compute J(x*), f(x¥)
solve the linear system J;(x*)z = —f(x")
xl = xk 4+ 7z

k += 1
k

return X

Week 43/44: Methods for solving ODEs

« Task: Solve the ODE x(t) = f(x,t); solution is x(t)
« Numerically: find a series {x*}_,, x* =~ x(kh)
* Formulation of methods is the same for 1-D and n-D
« Methods can be explicit or implicit
— Explicit: x* can be computed directly (explicit Euler, Heun’s)
— Implicit: x* is computed by solving an equation (implicit Euler)
« Methods can have several stages

— Combine several estimates of the slope to get a better fit.
* Heun’s method is a 2-stage method

« Stability

— A method is unstable if x* - o as k — oo when applied to the test equation

f(x,t) = —Ax, A=0

— Implicit methods are often more stable but slower than explicit methods
« Convergence order

— A method is of order p if |x* — x(kh)| < C,hP

— An order p method improves its answer by a factor 2P when h — h/2

— Explicit/Implicit Euler are order 1, Heun’s method order 2

Algorithm: Explicit Euler

Type: ODE solvers. x(t) = f(x,t), x(0) = x°
Initialization: x°, T, N

Mathematically: x/*! = x/ + hf(x/,¢;)
Pseudoalgorithm:

x list = [xY]
x = x0
h = T/N

for j in range(N)
x = x + hf(x,jh)
X list.append(x)

return x list

Algorithm: Implicit Euler

Type: ODE solvers. x(t) = f(x,t), x(0) = x°
Initialization: x°, T, N

Mathematically: x/** = x/ + hf (x/*%,t;44)
Pseudoalgorithm:

x list = [x°]
x = x0
h = T/N

for j in range(N)
solve the equation y = x + hf(y,(j+1)h)
X=Y
X list.append(x)

return x list

Algorithm: Heun’s method

- Type: ODE solvers. x(t) = f(x,t), x(0) = x°
« Initialization: x°,T,N
+ Mathematically: s/*! =x/ + hf(x/,¢;)

. . h . .
It =x) + 5 (f(xf,tj) + f(s/*, tj+1))
 Pseudoalgorithm:
x list = [x°]
x = x0

h = T/N

for j in range(N)
s = x + hf(x,jh)
x = x + h/2*(f(x,3jh) + f(s,(j+1)h))
X list.append(x)

return x list

Week 41: Plotting

* Include matplotlib using the command
import matplotlib.pyplot as plt

« Given lists x and y of equal length, we plot the points
(x[1],y[i]) with the command plt.plot(x,V)

— Same as when drawing a graph from hand if you have no idea
how it looks: put dots on the coordinates and draw lines between

« To see the figure, use plt.show()
#Inform about label on the y axis
plt.ylabel(' some numbers’)

#AxX1s range: [X min, X max, y min, y max]
plt.axis([0,4,0,16])

Plotting styles

* The default behaviour of plt.plot () is to connect the
points with lines
« We can change this using additional arguments after the
x/y coordinates
— For example, to plot y over the x points as red circles:
plt.plot(x,y, ' 'ro’)
— To plot y over the x points as green triangles:

plt.plot(x,y,'g"")

Plotting several graphs in one figure

 If we want to generate several graphs, plot all of them
first using plt.plot (), then use plt.show()

#Import plotting library
import matplotlib.pyplot as plt

X = ..
yl = £(x)
Y2 = g(x)

plt.plot(x,yl)
plt.plot(x,vy2)
plt.show()

Questions?

28 ®@NTNU

