
TDT4127 Programming and Numerics
Week 46
Repetition and exam preparation
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Next week

• Questions about the exam: 
– Friday November 23, 16:15-17:00
– Bring your questions, Guttorm and I will bring our answers
– Afterward, 17:00 – 18:00: Final exam prep
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Today

• Finalize adaptive Simpson’s method
– Going through implementation

• Repetition
– Summarize what we’ve learned
– Go through exercises

• Exam preparation
– What do we need to know?
– What can be expected in the exam?
– How do we prepare?
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Implementing Adaptive Simpson’s rule

! ", $ denotes Simpson’s on the integral from " to $.
To approximate the integral over [", $] with error < (:

1. Compute ! ", $ . 
2. Compute ! ", ) and ! ), $ .
3. Estimate the error in ! ", ) + ! ), $ :

if ! ", $ − ! ", ) + ! ), $ < 15 ∗ (:
return /0

/1 ! ", ) + ! ), $ − /
/1 ! ", $

else:
estimate the integrals over [", )] and [), $] with error less than (/2
return the two estimates added together
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Repetition
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Week 35/36: Number representation

• Computers mainly use two storage formats for numbers: 
Integers and floating point numbers (floats)

• Integers: Precise representations of whole numbers
– Used for counting, numbering etc.
– Format: Binary numbers. 8-bit example:

10010101 = 1*128 + 0* 64 + 0*32 + 1*16 + 0*8 + 1*4 + 0*2 + 1*1 = 149

– More bits ⇔ can represent larger numbers
– First bit may represent the sign (0 means negative, 1 positive)
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Week 35/36: Number representation

• Floating point numbers: Imprecise versions of real 
numbers
– Used in calculations requiring decimal points
– Format: Scientific notation in base 2 (totallsystemet)

! = −1 %&×2)*+×1. -.-/-0 … -2
• -3: sign,  4: exponent,  5: bias,  1. -.-/-0 … -2: significand/mantissa

– Due to imprecision, be careful with floating point operations:
• ! ± 5 is problematic if ! and 5 are very different in size
• ! ×5 and !/5 are safe
• ! == 5 is very unsafe and should be avoided (check |! − 5| < :

instead)
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Week 36/38/39: Equation solvers

• Solving ! " = $ " ⇔ solving ℎ " = ! " − $ " = 0
– Therefore the algorithms are based on solving ℎ " = 0.

• Three methods: bisection, secant and Newton’s
– Newton uses derivative. Secant and bisection: derivative free
– Newton is faster than secant which is faster than bisection
– Bisection has less rigid restrictions than secant which has less 

rigid restrictions than Newton
Property type Newton’s method Secant method Bisection method
Continuity !′′ !′ !
Nonzero !** + ≠ 0, !* " ≠ 0 !* + ≠ 0 None
Extra bounds !** "

!* . ≤ 0 None None

Starting point Close enough Close enough [2, 3]encloses +
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Algorithm: Bisection method

• Type: Equation solver. Finds zeroes: !(#) = 0
• Initialization: [(, *] such that !(() and !(*) have different 

signs (! ( ! * < 0), a minimum width -.
• Mathematically: Halve the interval, but ensure ! ( ! * < 0
• Pseudoalgorithm: 

while abs(a-b) > epsilon:
c = (a+b)/2
if f(a) and f(c) have the same sign:

a = c 
else:

b = c
if f(c) is 0:

return c
return c
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Algorithm: Newton’s method

• Type: Equation solver. Finds zeroes: !(#) = 0
• Initialization: Starting value #', tolerances (, *.
• Mathematically: #,-. = #, − !(#,)/!′(#,)
• Algorithm: 

k = 0
diff = delta + 1
while f(#,) > epsilon and diff > delta

#,-. = #, – f(#,)/f’(#,)
diff = #,-. - #,
k = k+1

return #,-.
• Note: Requires the derivative !′(#)
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Algorithm: Secant method

• Type: Equation solver. Finds zeroes: !(#) = 0
• Initialization: Starting values #' and #(, tolerances ), +.
• Mathematically: #-.( = #- − ! #- 0120134

5 01 25 0134
• Algorithm: 

k = 1
while f(#-) > epsilon and abs(#- – #-2() > delta

#-.( = #- – f(#-)(#- - #-2()/(f(#-) – f(#-2())
k = k+1

return #-.(
• Note: Can be seen as a derivative-free version of Newton’s
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Week 37/45: Numerical integration

• Task: Compute a definite integral ∫"
# $ % d%

• Three methods: Midpoint, trapezoidal, Simpson’s rule
– Based on: constant, linear and quadratic approximations of $.
– Simpson’s rule is a bit more work but also more accurate

• Composite methods: Split [(, *] into , parts, integrate each
part separately, add together.

• Error analysis, -. = max
"343#

$′′(7) ,-9 = max
"343#

$′′′′(7):

;<= ≤
* − ( @

24,. -., ;CD ≤
* − ( @

12,. -., ;CD ≤
* − ( F

2880,9 -9

• Adaptive Simpson’s rule uses error analysis/recursion
– More efficient than composite methods, guarantees error
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Algorithm: Composite Midpoint rule

• Type: Integral computing. Finds ∫"
# $ % d%

• Initialization: [(, *], number of intervals ,
• Mathematically: 

-
"

#
$ % d% ≈ ℎ0

123

456
$ %1 +

ℎ
2 , ℎ = ( − *

, , %1 = ( + ;ℎ

• Algorithm: 
h = (b-a)/N
totalSum = 0
for k in range(0,N)

x_k = a + k*h
totalSum += f(x_k + h/2)

totalSum = h*totalSum
return totalSum
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Algorithm: Composite Trapezoidal rule

• Type: Integral computing. Finds ∫"
# $ % d%

• Initialization: [(, *], number of intervals ,
• Mathematically: 

-
"

#
$ % d% ≈ ℎ

2 $ %1 + 23
456

786
$ %4 + $ %7 , ℎ = ( − *

, , %4= ( + ;ℎ

• Algorithm: 
h = (b-a)/N
totalSum = f(a)
for k in range(1,N)

x_k = a + k*h
totalSum += 2*f(x_k)

totalSum += f(b)
totalSum = h/2*totalSum
return totalSum
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Algorithm: Composite Simpson’s rule

• Type: Integral computing. Finds ∫"
# $ % d%

• Initialization: [(, *], number of intervals ,
• Mathematically: 

-
"

#
$ % d% ≈ ℎ

3 $ %1 + 4$ %4 + 2$ %6 + 4$ %7 + ⋯+ 2$ %69:6 + 4$ %69:4 + $ %69

ℎ = ( − *
2, , %= = ( + >ℎ

• Algorithm: 
h = (b-a)/(2*N)
totalSum = f(a)
for k in range(1,2N)

x_k = a + k*h
if k % 2 is 1: # Odd index

totalSum += 4*f(x_k)
else:  # Even index

totalsum += 2*f(x_k)
totalSum += f(b)
totalSum = h/3*totalSum
return totalSum



16

Algorithm: Adaptive Simpson’s rule

• Type: Integral computing. Finds ∫"
# $ % d%

• Initialization: [(, *], error tolerance ,
• Algorithm:
def ad_Simpson(f,a,b,eps)

whole = Simpson(f,a,b)
c = (a+b)/2
left = Simpson(f,a,c)
right = Simpson(f,b,c)
if abs(whole – (left + right)) < 15*eps:  # Error OK

return 16/15*(left + right) – 1/15*whole # Extrapolation
else: # Error not OK, split interval in two

return ad_Simpson(f,a,c,eps/2) + ad_Simpson(f,c,b,eps/2) 
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Week 40/41: Gaussian elimination

• Task: Solve a matrix-vector system !" = $
• The method: Gaussian elimination + back substitution
• GE is a direct solver: Running the algorithm gives the

answer, no iterations or error estimates
• Roundoff errors are minimized by partial pivoting

– Swap rows such that the pivot element is maximal in its column
• After Gaussian elimination, use back substitution to 

find the answer
• Can be implemented in-place; don’t need to create new

matrices, saves space
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Algorithm: Gaussian elimination with
partial pivoting
• Type: Linear equation solver. Solves: !" = $
• Initialization: %×(% + 1) augmented matrix +
• Pseudoalgorithm: 

row = 0, col = 0
while (row < N-1 and col < N):

ind_row_max = get_max(M,row,col) # Maximum in col
if w_max][col] is 0: # Pivot element is 0

col += 1 # No nonzero element in pivot column
else:

swap(M[row_ind],M[max_row_ind]) # Swap rows
row_reduce(M,row,col) # Zero out rows below
row += 1, col += 1

x = back_substitute(M) # Back substitution



19

Week 42: Newton’s method in n-D
• Task: Solve ! " = $
• Very similar to the 1-D version, uses the Jacobian matrix

%! & =

'()
'*)

(&) '()
'*-

(&) ⋯ '()
'*/

(&)
'(-
'*)

(&) '(-
'*-

(&) ⋯ '(-
'*/

(&)
⋮ ⋮ ⋱ ⋮

'(/
'*)

(&) '(/
'*-

(&) ⋯ '(/
'*/

(&)
1. Solve the linear system %! "2 3 = −! "2
2. Compute "567 = "5 + 3

• Stopping conditions must take all dimensions into account
– Example: () "5 < : and (- "5 < : … and (/ "5 < :, 

and/or: *)2 − *)2;- < < and … and */2 − */2;- < <. 
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Algorithm: Newton’s method in n-D

• Type: Equation solver. Finds zeroes: !(#) = 0
• Initialization: #', tolerances (, *.
• Mathematically: 

– Solve the linear system ,! #- . = −! #-
– Compute #012 = #0 + .

• Pseudoalgorithm: 
k = 0
while <stopping conditions are not satisfied>

compute ,! #- , ! #-
solve the linear system ,! #- . = −! #-
#012 = #0 + .
k += 1

return #0
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Week 43/44: Methods for solving ODEs

• Task: Solve the ODE "̇ # = %(", #); solution is "(#)
• Numerically: find a series ") )*+

, , ") ≈ "(.ℎ)
• Formulation of methods is the same for 1-D and n-D
• Methods can be explicit or implicit

– Explicit: 01 can be computed directly (explicit Euler, Heun’s)

– Implicit: 01 is computed by solving an equation (implicit Euler)

• Methods can have several stages
– Combine several estimates of the slope to get a better fit.

• Heun’s method is a 2-stage method

• Stability
– A method is unstable if ") → ∞ as k → ∞ when applied to the test equation

% ", # = −6", 6 ≥ 0
– Implicit methods are often more stable but slower than explicit methods

• Convergence order
– A method is of order 9 if |") − "(.ℎ)| < <)ℎ=
– An order 9 method improves its answer by a factor 2= when ℎ → ℎ/2
– Explicit/Implicit Euler are order 1, Heun’s method order 2
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Algorithm: Explicit Euler

• Type: ODE solvers. "̇ # = % ", # , " 0 = "(
• Initialization: "(, ), *
• Mathematically: "+,- = "+ + ℎ% "+, #+
• Pseudoalgorithm: 

x_list = ["(]
x = "(
h = T/N
for j in range(N)

x = x + hf(x,jh)
x_list.append(x)

return x_list
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Algorithm: Implicit Euler

• Type: ODE solvers. "̇ # = % ", # , " 0 = "(
• Initialization: "(, ), *
• Mathematically: "+,- = "+ + ℎ% "+,-, #+,-
• Pseudoalgorithm: 

x_list = ["(]
x = "(
h = T/N
for j in range(N)

solve the equation y = x + hf(y,(j+1)h)
x = y
x_list.append(x)

return x_list
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Algorithm: Heun’s method

• Type: ODE solvers. "̇ # = % ", # , " 0 = "(
• Initialization: "(, ), *
• Mathematically: +,-. = ", + ℎ% ",, #,

",-. = ", + ℎ2 % ",, #, + % +,-., #,-.
• Pseudoalgorithm: 

x_list = ["(]
x = "(
h = T/N
for j in range(N)

s = x + hf(x,jh)
x = x + h/2*(f(x,jh) + f(s,(j+1)h))
x_list.append(x)

return x_list
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Week 41: Plotting

• Include matplotlib using the command
import matplotlib.pyplot as plt

• Given lists x and y of equal length, we plot the points
(x[i],y[i]) with the command plt.plot(x,y)
– Same as when drawing a graph from hand if you have no idea

how it looks: put dots on the coordinates and draw lines between
• To see the figure, use plt.show()
#Inform about label on the y axis
plt.ylabel('some numbers’)
#Axis range: [x_min, x_max, y_min, y_max]
plt.axis([0,4,0,16])
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Plotting styles

• The default behaviour of plt.plot() is to connect the
points with lines

• We can change this using additional arguments after the
x/y coordinates
– For example, to plot y over the x points as red circles:

plt.plot(x,y,’ro’)
– To plot y over the x points as green triangles:

plt.plot(x,y,’g^’)
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Plotting several graphs in one figure

• If we want to generate several graphs, plot all of them
first using plt.plot(), then use plt.show()

#Import plotting library
import matplotlib.pyplot as plt
x = …
y1 = f(x)
y2 = g(x) 
plt.plot(x,y1)
plt.plot(x,y2)
plt.show()
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Questions?


