TDT4127 Programming and Numerics
Week 46

Repetition and exam preparation

Kunnskap for en bedre verden

®@NTNU



Learning goals

* Finalize adaptive Simpson’s method
— Going through implementation

« Repetition
— Summarize what we've learned
— Go through exercises

« Exam preparation

— What do we need to know?
— What can be expected in the exam?

— How do we prepare?

2 ®@NTNU



Implementing Adaptive Simpson'’s rule

S(a,b) denotes Simpson’s on the integral from a to b.
To approximate the integral over [a, b] with error < e:

1. Compute S(a, b).
2. Compute S(a,c) and S(c, b).
3. Estimate the errorin S(a,c) + S(c, b):
if |S(a, b) — (S(a, c)+ S(c, b))| < 15 * €:
return = (S(a, ) + S(¢, b)) — = S(a, b)

else:

estimate the integrals over [a, c] and [c, b] with error less than €/2
return the two estimates added together

3 ®@NTNU



Repetition




Week 35/36: Number representation

« Computers mainly use two storage formats for numbers:
Integers and floating point numbers (floats)

* Integers: Precise representations of whole numbers
— Used for counting, numbering etc.

— Format: Binary numbers. 8-bit example:
10010101 = 1*128 + 0* 64 + 0*32 + 1*16 + 0*8 + 1*4 + 0*2 + 1*1 = 149

— More bits & can represent larger numbers
— First bit may represent the sign (0 means negative, 1 positive)

5 ®@NTNU



Week 35/36: Number representation

* Floating point numbers: Imprecise versions of real
numbers
— Used in calculations requiring decimal points

— Format: Scientific notation in base 2 (totallsystemet)
a=(-1)"9%2°"Px1.5,5,55 ...5x

* sg:sign, e:exponent, b: bias, 1.s;s,55 ...5;: significand/mantissa
— Due to imprecision, be careful with floating point operations:

* a + bis problematic if a and b are very different in size

* axband a/b are safe

* a == b is very unsafe and should be avoided (check |a — b| <€
instead)

6 ®@NTNU



Week 36/38/39: Equation solvers

« Solving f(x) = g(x) © solving h(x) = f(x) —g(lx) =0
— Therefore the algorithms are based on solving h(x) = 0.
 Three methods: bisection, secant and Newton’s
— Newton uses derivative. Secant and bisection: derivative free
— Newton is faster than secant which is faster than bisection

— Bisection has less rigid restrictions than secant which has less
rigid restrictions than Newton

Property type Newton’s method Secant method | Bisection method

Continuity

Nonzero f'"(z) + O,f (x) #0 f' (Z) * 0 None

Extra bounds | (x)] oy None None
'Ol

Starting point Close enough Close enough [a, b]encloses z

7 ®@NTNU



Algorithm: Bisection method

« Type: Equation solver. Finds zeroes: f(x) = 0

* Initialization: [a, b| such that f(a) and f(b) have different
signs (f(a)f(b) < 0), a minimum width e.

- Mathematically: Halve the interval, but ensure f(a)f(b) < 0

 Pseudoalgorithm:
while abs(a-b) > epsilon:
c = (atb)/2
1f f(a) and f(c) have the same sign:
a = c
else:
b =c
1if f(c) 1is O:
return c
return c

8 ®@NTNU



Algorithm: Newton’s method

« Type: Equation solver. Finds zeroes: f(x) = 0
+ Initialization: Starting value x,, tolerances ¢, 6.
« Mathematically: x;,1 = x, — f(xx)/f (xx)
* Pseudoalgorithm:
k =0
diff = delta + 1
while f(xr) > epsilon and diff > delta
Xp+1 = X — E(xg)/£7 (xg)
diff = Xk+1 — Xk
k = k+1

return Xg4q

* Note: Requires the derivative f'(x)

9 ®@NTNU



Algorithm: Secant method

« Type: Equation solver. Finds zeroes: f(x) = 0
* Initialization: Starting values x, and x,, tolerances ¢, 6.

. . . — — ad mad.
Mathematically: x;.,1 = xi — f (i) -5

* Pseudoalgorithm:

k =1

while f(xp) > epsilon and abs(x;, — Xx_q1) > delta
Xp+1 = X — E(xg) (X = Xp—1)/ (£(xg) — £(Xp-1))
k = k+1

return Xp4q

* Note: Can be seen as a derivative-free version of Newton’s




Week 37/45: Numerical integration

« Task: Compute a definite integral fff(x)dx

 Three methods: Midpoint, trapezoidal, Simpson’s rule
— Based on: constant, linear and quadratic approximations of f.
— Simpson’s rule is a bit more work but also more accurate

« Composite methods: Split [a, b] into N parts, integrate each
part separately, add together.
 Error analysis, M, = maxg<y<p f''(¥), My = maxg<y<p [ (¥):

(b—a)3M - <(b—a)3M . <(b—a)5M
24N2 % TR ="q12N2 7% TR = 9880N% *

Eyp <

« Adaptive Simpson’s rule uses error analysis/recursion
— More efficient than composite methods, guarantees error




Algorithm: Composite Midpoint rule

 Type: Integral computing. Finds f;f(x)dx
+ Initialization: [a, b], number of intervals N
 Mathematically:

b — h a—b
Jf(x)dxthf(xk+§), h=""",  me=a+kh
a k=0

« Algorithm:
h = (b-a)/N
totalSum = 0

for k in range(0,N)

x k = a + k*h

totalSum += f(x k + h/2)
totalSum = h*totalSum
return totalSum




Algorithm: Composite Trapezoidal rule

- Type: Integral computing. Finds fff(x)dx
 Initialization: [a, b], number of intervals N
* Mathematically:

b h - a—>b
| reax ~ 2<f(xo) +2) [0+ f(xN)>, h="2, xe=a+ kh
“ k=1

N

« Algorithm:
h = (b-a)/N
totalSum = f(a)
for k in range(1l,N)
x k = a + k*h
totalSum += 2*f(x k)
totalSum += f(b)
totalSum = h/2*totalSum
return totalSum




Algorithm: Composite Simpson’s rule

* Type: Integral computing. Finds f;f(x)dx
« Initialization: [a, b], number of intervals N
 Mathematically:

b
[ FO = 5 (700D + 47 G 27 Ce) 47 Ge) 4 2 Gy 2) + 4 Cea) +  Ci)
a—>b

h—W, xk=a+kh

« Algorithm:
h = (b-a)/(2*N)
totalSum = f(a)
for k in range(1l,2N)
x k = a + k*h
if k $ 2 is 1: # 0dd index
totalSum += 4*f(x k)
else: # Even index
totalsum += 2*f(x k)
totalSum += f(b)
totalSum = h/3*totalSum

return totalSum




Algorithm: Adaptive Simpson’s rule

« Type: Integral computing. Finds f(ff(x)dx
+ Initialization: [a, b], error tolerance €
« Algorithm:

def ad_Simpson(f,a,b,eps)
whole = Simpson(f,a,b)
c = (atb)/2
left = Simpson(f,a,c)
right = Simpson(f,b,c)
1f abs(whole — (left + right)) < 15*eps: # Error OK
return 16/15*(left + right) — 1/15*whole # Extrapolation
else: # Error not OK, split interval in two

return ad_Simpson(f,a,c,eps/2) + ad Simpson(f,c,b,eps/2)




Week 40/41: Gaussian elimination

« Task: Solve a matrix-vector system Ax = b

* The method: Gaussian elimination + back substitution

« GE is a direct solver: Running the algorithm gives the
answer, no iterations or error estimates

* Roundoff errors are minimized by partial pivoting
— Swap rows such that the pivot element is maximal in its column

o After Gaussian elimination, use back substitution to find
the answer




Algorithm: Gaussian elimination with
partial pivoting

« Type: Linear equation solver. Solves: Ax = b
 [Initialization: None

* Pseudoalgorithm:
while abs(a-b) > epsilon:
c = (atb)/2

1f f(a) and f(c) have the same sign:

a = cC
else:
b = c

1if f(c) 1is O:
return c

return ¢




Week 42: Newton’s method in n-D

« Task: Solve f(x) =0
* Very similar to the 1-D version, uses the Jacobian matrix
« Convergence behaviour is also equivalent

« Stopping conditions must take all dimensions into
account




Algorithm: Newton’s method for systems

« Type: Equation solver. Finds zeroes: f(x) = 0

 Initialization: x,, tolerances ¢, §.

« Mathematically: Same as Newton’'s method in 1D, but with
Jacobian instead of derivative due to several variables

 Pseudoalgorithm:
while abs(a-b) > epsilon:
c = (atb)/2
1f f(a) and f(c) have the same sign:

a = ¢
else:
b = c

1if f(c) 1is O:
return c

return c¢




Week 43/44: Methods for solving ODEs

« Task: Solve the ODE x(t) = f(x,t)
- Numerical solution is a time series {x"}i’:O, xk ~ x(kh)

 Formulation of methods is the same for 1-D and n-D

 Methods can be explicit or implicit
— Explicit: x* can be computed directly (explicit Euler, Heun’s)
— Implicit: x* is computed by solving an equation (implicit Euler)
 Methods can have several stages
— Heun’s method is a 2-stage method
. Stability
— Methods are unstable if they blow up for the test equation
flx,t) = —Ax

« Convergence order
— A method is of order p if |x* — x(kh)| < C} hP
— An order p method improves its answer by a factor 2P when h - h/2
— Explicit/Implicit Euler are order 1, Heun’s method order 2




Algorithm: Explicit/Implicit Euler, Heun’s
method

« Type: ODE solvers. x(t) = f(x,t)
e Initialization: x°, T, N
- Mathematically: x**1 =

 Pseudoalgorithm:
while abs(a-b) > epsilon:
c = (atb)/2
1if f(a) and f(c) have the same sign:

a = ¢
else:
b = c

1if f(c) 1is O:
return c
return c




Week 41: Plotting

« Using the matplotlib library




Questions?

23 ®@NTNU



