## TDT4127 Programming and Numerics

 Week 45Adaptive Simpson's method

- A recursive look at integration


## Learning goals

- Goals
- Computing integrals
- Adaptive Simpson's method
- Recursion
- Curriculum
- Exercise set 10
- Note: This set counts as two exercises

- If you do the chess exercise


## Numerical integration - repetition

- Everyone loves to integrate! But it can be hard.

$$
\int_{a}^{b} f(x) \mathrm{d} x=?
$$

- Integrating in 1D $\Leftrightarrow$ Finding area under the graph

- The idea: Approximate $f(x)$ by something easier
- Polynomials are really easy and approximate well!


## Midpoint rule - repetition

- Approximate $f$ by a constant, $f\left(\frac{a+b}{2}\right)$, and integrate:



## Trapezoidal rule - repetition

- Approximate $f$ by a linear polynomial $g$ and integrate:

$$
g(x)=f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}
$$



$$
\int_{a}^{b} f(x) \mathrm{d} x \approx(f(a)+f(b)) \frac{b-a}{2}
$$

## Simpson's rule - repetition

- Approximate $f$ by a quadratic polynomial $g$ and integrate:

$$
g(x)=f(a) \frac{(x-b)(x-c)}{(a-b)(a-c)}+f(b) \frac{(x-a)(x-c)}{(b-a)(b-c)}+f(c) \frac{(x-a)(x-b)}{(c-a)(c-b)}
$$



$$
\int_{a}^{b} f(x) \mathrm{d} x \approx(f(a)+4 f(c)+f(b)) \frac{b-a}{6}
$$

## Composite rules - repetition

- Split $[a, b]$ into smaller subintervals, approximate the integrals

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x \approx \int_{a}^{c} g(x) \mathrm{d} x+\int_{c}^{b} g(x) \mathrm{d} x
$$

- This is called a composite method
- We called the number of subintervals $N$
- We considered subintervals of fixed width $h$
- Splitting an interval of width $(b-a)$ into $N$ parts gives $h=(b-a) / N$.


## Composite Simpson's rule

- Use a quadratic approximation on each subinterval
- Subintervals: $\left[x_{2 k}, x_{2 k+2}\right], k=0, \ldots, N-1$,

$$
x_{k}=a+k h, \quad h=\frac{b-a}{2 N}
$$



$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)^{0.4}+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right)
$$

## Composite Simpson's rule

- Use a quadratic approximation on each subinterval
- Subintervals: $\left[x_{2 k}, x_{2 k+2}\right], k=0, \ldots, N-1$,

$$
x_{k}=a+k h, \quad h=\frac{b-a}{2 N}
$$


$\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right)$

## Composite Simpson's rule

- Use a quadratic approximation on each subinterval
- Subintervals: $\left[x_{2 k}, x_{2 k+2}\right], k=0, \ldots, N-1$,

$$
x_{k}=a+k h, \quad h=\frac{b-a}{2 N}
$$



$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right)
$$

## Inefficiency in composite rules

- Criticism: We add more points even in areas that don't need better approximations
- From the previous example, see the left half of the interval
- Problem: more function evaluations than necessary
- More function evaluations $\Rightarrow$ longer running time
- We want to improve the efficiency by only splitting into more subintervals where necessary


## Adaptive refinement example

- The integral is not good enough, needs refinement
- The whole interval should be split in more subintervals



## Adaptive refinement example

- The integral of the left hand interval here looks good
- The right interval should be split in more subintervals



## Adaptive refinement example

- The two leftmost integrals look good
- The right interval should be split in more subintervals



## Adaptive refinement example

- The whole integral in general looks good
- No interval needs to be split in more subintervals



## Adaptive refinement example

- Same(ish) approximation for half the number of function evaluations of the composite algorithm (below left)
- We must express the process as an algorithm!




## Adaptive refinement

- Two clarifications are needed to state the algorithm
- How do we keep track of which intervals are good and bad?
- Answer: Use recursion and we don't need to worry about it
- Make an algorithm valid for a general interval, then when splitting in two, simply apply the same algorithm to each part
- How do we quantify a bad interval?
- Answer: Use error estimates!
- Choose an $\epsilon$. If the integral error over the interval is $<\epsilon$, it's good
- If not, it's bad. Split the interval in two and require error $<\epsilon / 2$ in each
- An added bonus: We can guarantee an error of less than $\epsilon$.
- Problem: We don't want to calculate the maximum derivative of $f$ !
- With a clever trick, we can estimate it instead!


## Automatic error estimates

- Write $S(a, b)$ for the (non-composite) Simpson's rule. Simpson's rule has an error term:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx S(a, b)+M(b-a)^{5}
$$

- The value of $M$ is unknown here.
- With $c=(b+a) / 2$,

$$
\begin{aligned}
& \int_{a}^{c} f(x) \mathrm{d} x \approx S(a, c)+\frac{M(b-a)^{5}}{32} \\
& \int_{c}^{b} f(x) \mathrm{d} x \approx S(c, b)+\frac{M(b-a)^{5}}{32}
\end{aligned}
$$

- Adding both integrals also estimates the integral from $a$ to $b$


## Automatic error estimates

- We have two slightly different estimates of the integral,

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx S(a, b)+M(b-a)^{5} \approx S(a, c)+S(c, b)+\frac{M(b-a)^{5}}{16} .
$$

- Use this to estimate the error:

$$
|S(a, b)-(S(a, c)+S(c, b))| \approx 15 * \frac{M(b-a)^{5}}{16}
$$

- If $|S(a, b)-(S(a, c)+S(c, b))| \leq 15 * \epsilon$, the error in the estimate $S(a, c)+S(c, b)$ is smaller than $\epsilon$.
- If this is true, the interval is good
- If this is false, we split the interval in two and want an error less than $\epsilon / \mathbf{2}$ in each half.


## A trick for even more accuracy

- We now have two estimates

$$
\begin{gathered}
\int_{a}^{b} f(x) \mathrm{d} x \approx S(a, b)+M(b-a)^{5} \\
\int_{a}^{b} f(x) \mathrm{d} x \approx S(a, c)+S(c, b)+\frac{M(b-a)^{5}}{16}
\end{gathered}
$$

- If we subtract $1 / 15$ of the first from $16 / 15$ of the second:

$$
\begin{aligned}
& \int_{a}^{b} f(x) \mathrm{d} x=\frac{16}{15} \int_{a}^{b} f(x) \mathrm{d} x-\frac{1}{15} \int_{a}^{b} f(x) \mathrm{d} x \\
& \approx \frac{16}{15}(S(a, c)+S(c, b))+\frac{1}{15} M(b-a)^{5}-\frac{1}{15} S(a, b)-\frac{1}{15} M(b-a)^{5} \\
& =\frac{16}{15}(S(a, c)+S(c, b))-\frac{1}{15} S(a, b)
\end{aligned}
$$

- Negate one error with another to find a more accurate estimate
- Eliminating errors like this is called Richardson extrapolation
- General Richardson extrapolation is not curriculum, but useful


## Adaptive Simpson's rule algorithm

To approximate the integral over $[a, b]$ with error $<\epsilon$ :

1. Compute $S(a, b)$.
2. Compute $S(a, c)$ and $S(c, b)$.
3. Estimate the error in $S(a, c)+S(c, b)$ :

$$
\text { if }|S(a, b)-(S(a, c)+S(c, b))|<15 * \epsilon \text { : } \quad \begin{aligned}
& \text { return } \frac{16}{15}(S(a, c)+S(c, b))-\frac{1}{15} S(a, b)
\end{aligned}
$$

else:
estimate the integrals over $[a, c]$ and $[c, b]$ with error less than $\epsilon / 2$ return the two estimates added together

## Summary

- The adaptive Simpson's rule allows us to compute integrals efficiently using two tricks:
- Error analysis
- To identify which intervals have bad estimates
- To improve current estimates using extrapolation
- And to do this without having to compute derivatives!
- Recursion
- Using adaptive Simpson's rule recursively on each subinterval
- Exploiting the self-similarity of each subproblem


## Questions about auditorium exercise

- Regarding more detailed feedback on the exercise(s):
- Results from automatically corrected exercises (e.g. multiple choice/drag and drop) will be posted online, identifiable by candidate numbers
- Solution proposals are posted online for comparison
- If you need more details, you can ask an und.ass. (or stud.ass.) during lab hours
- Re-runs of the auditorium exercises in Inspera:
- The auditorium exercises cannot be retaken
- Exams (ordinary/continuation) from 2017 are available here: https://www.ntnu.no/wiki/display/tdt4110/Python+eksamensoppgaver


## Upcoming exam preparation

- November 30, 09:00-13:00.
- Check location at studentweb (may not be available yet)
- Theory questions will have multiple choice answers
- Both numerics and programming related
- Similar to those in Auditorium exercise 2
- «Formula sheet» for the exam will be digital only
- We will do our best to make it as user friendly as possible


## Next two weeks

- Two lectures left
- Repetition and exam prep on November 16 and November 23!
- I will go through the numerics from auditorium exercise 2 in detail
- Suggest other topics you want me to cover
- Otherwise, I'll pick them myself


## Questions?

