
TDT4127 Programming and Numerics
Week 45
Adaptive Simpson’s method
- A recursive look at integration

2

Learning goals

• Goals
– Computing integrals
– Adaptive Simpson’s method
– Recursion

• Curriculum
– Exercise set 10

• Note: This set counts as two exercises
– If you do the chess exercise

3

Numerical integration - repetition

• Everyone loves to integrate! But it can be hard.

!
"

#
$ % d% = ?

• Integrating in 1D ⇔ Finding area under the graph

• The idea: Approximate $(%) by something easier
– Polynomials are really easy and approximate well!

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x)

4

Midpoint rule - repetition

• Approximate ! by a constant, ! "#$
% , and integrate:

&
"

$
! ' d' ≈ ! * + ,

2 (, − *)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(0.5)

5

Trapezoidal rule - repetition

• Approximate ! by a linear polynomial " and integrate:
" # = ! % # − '

% − ' + ! ' # − %
' − %

)
*

+
! # d# ≈ ! % + ! ' ' − %

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(0)

f(1)

6

Simpson’s rule - repetition

• Approximate ! by a quadratic polynomial " and integrate:
" # = ! % # − ' # − (

% − ' % − (+ ! ' # − % # − (
' − % ' − (+ ! (# − % # − '

(− % (− '

*
+

,
! # d# ≈ ! % + 4! (+ ! ' ' − %

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(0)

f(1)

f(0.5)

7

Composite rules - repetition

• Split [a,b] into smaller subintervals, approximate the integrals

!
"

#
$ % d% = !

"

(
$ % d% + !

(

#
$ % d% ≈ !

"

(
+ % d% + !

(

#
+ % d%

• This is called a composite method
• We called the number of subintervals N
• We considered subintervals of fixed width h
• Splitting an interval of width (b-a) into N parts gives h=(b-a)/N.

8

Composite Simpson’s rule

• Use a quadratic approximation on each subinterval
– Subintervals: !"#, !"#%" , & = 0,… , * − 1,

!& = - + &ℎ, ℎ = 0 − -
2*

2
3

4
5 ! d! ≈ ℎ

3 5 !9 + 45 !; + 25 !" + 45 !< + ⋯+ 25 !">?" + 45 !">?; + 5 !">
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x1)
f(x3)

9

Composite Simpson’s rule

• Use a quadratic approximation on each subinterval
– Subintervals: !"#, !"#%" , & = 0,… , * − 1,

!& = - + &ℎ, ℎ = 0 − -
2*

2
3

4
5 ! d! ≈ ℎ

3 5 !9 + 45 !; + 25 !" + 45 !< + ⋯+ 25 !">?" + 45 !">?; + 5 !">

10

Composite Simpson’s rule

• Use a quadratic approximation on each subinterval
– Subintervals: !"#, !"#%" , & = 0,… , * − 1,

!& = - + &ℎ, ℎ = 0 − -
2*

2
3

4
5 ! d! ≈ ℎ

3 5 !9 + 45 !; + 25 !" + 45 !< + ⋯+ 25 !">?" + 45 !">?; + 5 !">

11

Inefficiency in composite rules

• Criticism: We add more points even in areas that don’t
need better approximations
– From the previous example, see the left half of the interval

• Problem: more function evaluations than necessary
– More function evaluations ⇒ longer running time

• We want to improve the efficiency by only splitting into
more subintervals where necessary

12

Adaptive refinement example

• The integral is not good enough, needs refinement
• The whole interval should be split in more subintervals

13

Adaptive refinement example

• The integral of the left hand interval here looks good
• The right interval should be split in more subintervals

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x1)
f(x3)

14

Adaptive refinement example

• The two leftmost integrals look good
• The right interval should be split in more subintervals

15

Adaptive refinement example

• The whole integral in general looks good
• No interval needs to be split in more subintervals

16

Adaptive refinement example

• Same(ish) approximation for half the number of function
evaluations of the composite algorithm (below left)

• We must express the process as an algorithm!

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x1) f(x3) f(x5) f(x7) f(x9) f(x11)f(x13)
f(x15)

17

Adaptive refinement

• Two clarifications are needed to state the algorithm
– How do we keep track of which intervals are good and bad?

• Answer: Use recursion and we don’t need to worry about it
• Make an algorithm valid for a general interval, then when splitting

in two, simply apply the same algorithm to each part
– How do we quantify a bad interval?

• Answer: Use error estimates!
– Choose an !. If the integral error over the interval is < !, it’s good
– If not, it’s bad. Split the interval in two and require error < !/2 in each

• An added bonus: We can guarantee an error of less than !.
• Problem: We don’t want to calculate the maximum derivative of %!

– With a clever trick, we can estimate it instead!

18

Automatic error estimates

• Write !(#, %) for the (non-composite) Simpson’s rule.
Simpson’s rule has an error term:

'
(

)
* + d+ ≈ ! #, % + / % − # 1.

– The value of / is unknown here.
• With 3 = (% + #)/2,

'
(

7
* + d+ ≈ ! #, 3 + / % − # 1

32
'
7

)
* + d+ ≈ ! 3, % + / % − # 1

32
• Adding both integrals also estimates the integral from # to %

19

Automatic error estimates

• We have two slightly different estimates of the integral,
!
"

#
$ % d% ≈ (), + + - + −) /≈ (), 0 + (0, + + - + −) /

16 .

• Use this to estimate the error:

(), + − (), 0 + (0, + ≈ 15 ∗ - + −) /

16
• If (), + − (), 0 + (0, + ≤ 15 ∗ 7, the error in the

estimate (), 0 + (0, + is smaller than 7.
– If this is true, the interval is good
– If this is false, we split the interval in two and want an error less

than 8/: in each half.

20

A trick for even more accuracy

• We now have two estimates

!
"

#
$ % d% ≈ (), + + - + −) /

!
"

#
$ % d% ≈ (), 0 + (0, + + - + −) /

16
• If we subtract 1/15 of the first from 16/15 of the second:

!
"

#
$ % d% = 16

15!"
#
$ % d% − 1

15!"
#
$ % d%

≈ 16
15 (), 0 + (0, + + 1

15- + −) / − 1
15 (), + − 1

15- + −) /

= 16
15 (), 0 + (0, + − 1

15 (), +
• Negate one error with another to find a more accurate estimate
• Eliminating errors like this is called Richardson extrapolation

– General Richardson extrapolation is not curriculum, but useful

21

Adaptive Simpson’s rule algorithm

To approximate the integral over [", $] with error < ':

1. Compute (", $.
2. Compute (",) and (), $.
3. Estimate the error in (",) + (), $:

if (", $ − (",) + (), $ < 15 ∗ ':
return /0

/1 (",) + (), $ − /
/1 (", $

else:
estimate the integrals over [",)] and [), $] with error less than '/2
return the two estimates added together

22

Summary

• The adaptive Simpson’s rule allows us to compute
integrals efficiently using two tricks:
– Error analysis

• To identify which intervals have bad estimates
• To improve current estimates using extrapolation
• And to do this without having to compute derivatives!

– Recursion
• Using adaptive Simpson’s rule recursively on each subinterval
• Exploiting the self-similarity of each subproblem

23

Questions about auditorium exercise

• Regarding more detailed feedback on the exercise(s):
– Results from automatically corrected exercises (e.g. multiple

choice/drag and drop) will be posted online, identifiable by
candidate numbers

– Solution proposals are posted online for comparison
– If you need more details, you can ask an und.ass. (or stud.ass.)

during lab hours
• Re-runs of the auditorium exercises in Inspera:

– The auditorium exercises cannot be retaken
– Exams (ordinary/continuation) from 2017 are available here:

https://www.ntnu.no/wiki/display/tdt4110/Python+eksamensoppgaver

https://www.ntnu.no/wiki/display/tdt4110/Python+eksamensoppgaver

24

Upcoming exam preparation

• November 30, 09:00-13:00.
– Check location at studentweb (may not be available yet)

• Theory questions will have multiple choice answers
– Both numerics and programming related
– Similar to those in Auditorium exercise 2

• «Formula sheet» for the exam will be digital only
– We will do our best to make it as user friendly as possible

25

Next two weeks

• Two lectures left
– Repetition and exam prep on November 16 and November 23!
– I will go through the numerics from auditorium exercise 2 in

detail
– Suggest other topics you want me to cover

• Otherwise, I’ll pick them myself

26

Questions?

