TDT4127 Programming and Numerics Week 45

Adaptive Simpson's method

- A recursive look at integration

Learning goals

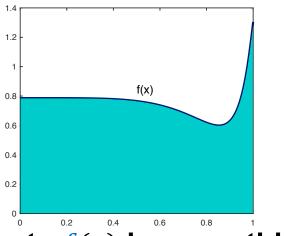
- Goals
 - Computing integrals
 - Adaptive Simpson's method
 - Recursion
- Curriculum
 - Exercise set 10
 - Note: This set counts as two exercises
 - If you do the chess exercise

Numerical integration - repetition

• Everyone loves to integrate! But it can be hard.

$$\int_{a}^{b} f(x) \mathrm{d}x = ?$$

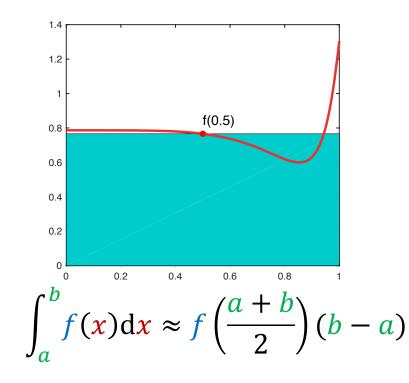
• Integrating in 1D \Leftrightarrow Finding area under the graph



- The idea: Approximate f(x) by something easier
 - Polynomials are really easy and approximate well!

Midpoint rule - repetition

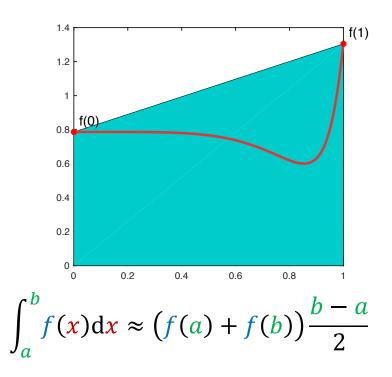
• Approximate f by a **constant**, $f\left(\frac{a+b}{2}\right)$, and integrate:



Trapezoidal rule - repetition

• Approximate *f* by a **linear** polynomial *g* and integrate:

$$g(x) = f(a)\frac{x-b}{a-b} + f(b)\frac{x-a}{b-a}$$



Simpson's rule - repetition

Approximate f by a quadratic polynomial g and integrate: $g(x) = f(a)\frac{(x-b)(x-c)}{(a-b)(a-c)} + f(b)\frac{(x-a)(x-c)}{(b-a)(b-c)} + f(c)\frac{(x-a)(x-b)}{(c-a)(c-b)}$ 1.2 f(0) f(0.5) 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 $\int_{a}^{b} f(x) \mathrm{d}x \approx \left(f(a) + 4f(c) + f(b)\right) \frac{b-a}{6}$

Composite rules - repetition

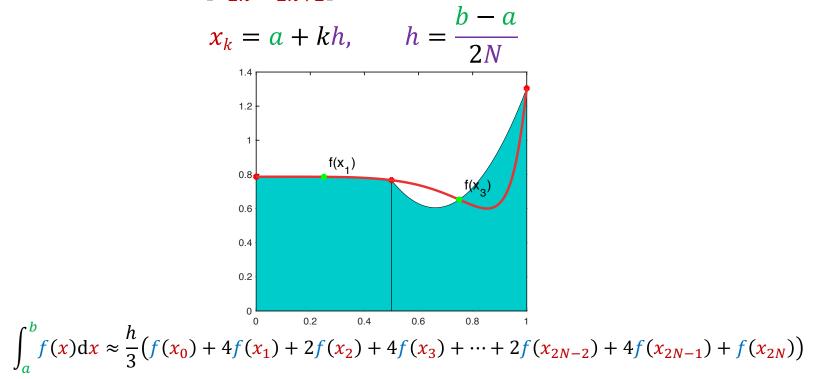
• Split [*a*,*b*] into smaller *subintervals*, *approximate the integrals*

$$\int_{a}^{b} f(x) \mathrm{d}x = \int_{a}^{c} f(x) \mathrm{d}x + \int_{c}^{b} f(x) \mathrm{d}x \approx \int_{a}^{c} g(x) \mathrm{d}x + \int_{c}^{b} g(x) \mathrm{d}x$$

- This is called a *composite* method
- We called the number of subintervals *N*
- We considered subintervals of fixed width *h*
- Splitting an interval of width (b-a) into N parts gives h=(b-a)/N.

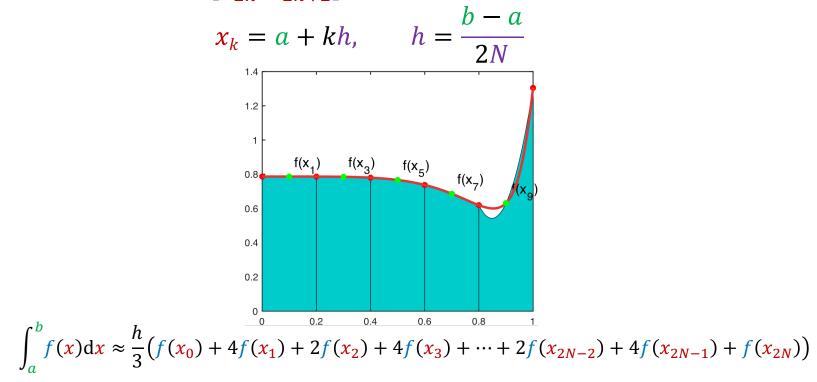
Composite Simpson's rule

Use a quadratic approximation on each subinterval



Composite Simpson's rule

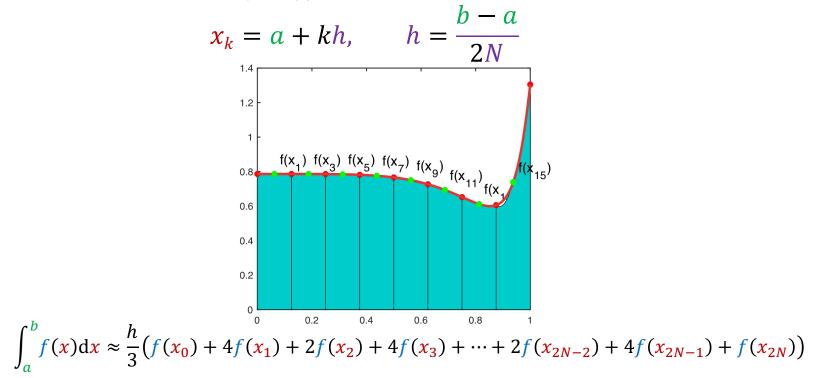
- Use a quadratic approximation on each subinterval
 - Subintervals: $[x_{2k}, x_{2k+2}], k = 0, ..., N 1,$



Composite Simpson's rule

Use a quadratic approximation on each subinterval

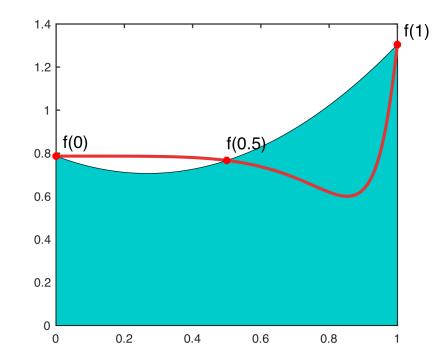
- Subintervals: $[x_{2k}, x_{2k+2}], k = 0, ..., N - 1,$



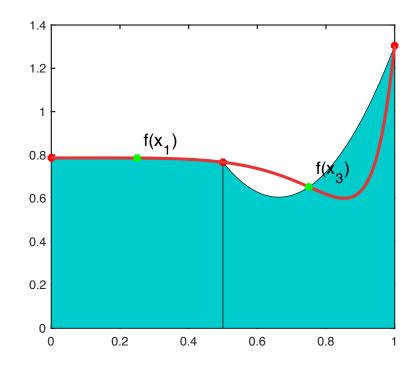
Inefficiency in composite rules

- <u>Criticism</u>: We add more points even in areas that don't need better approximations
 - From the previous example, see the left half of the interval
- Problem: more function evaluations than necessary
 - More function evaluations \Rightarrow longer running time
- We want to improve the efficiency by only splitting into more subintervals where necessary

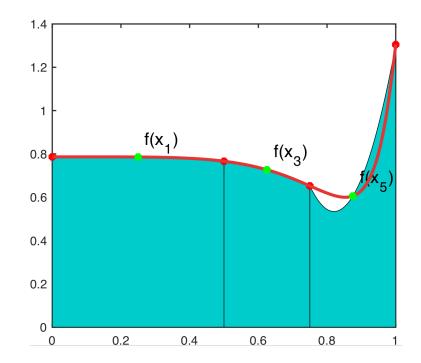
- The integral is not good enough, needs refinement
- The whole interval should be **split** in more subintervals



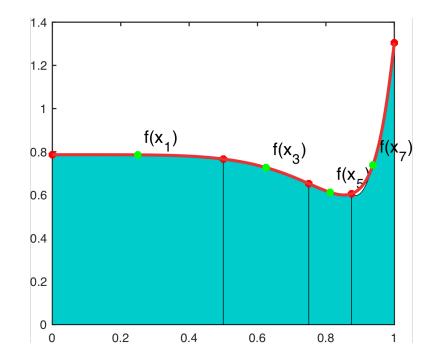
- The integral of the **left** hand interval here looks **good**
- The **right** interval should be **split** in more subintervals



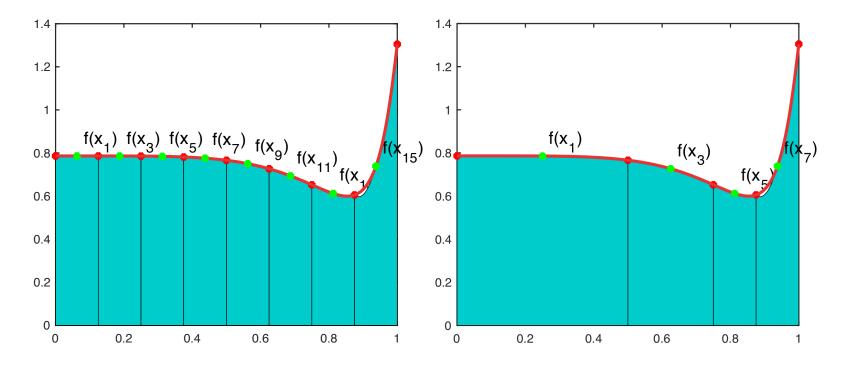
- The two leftmost integrals look good
- The **right** interval should be **split** in more subintervals



- The whole integral in general looks good
- No interval needs to be **split** in more subintervals



- Same(ish) approximation for half the number of function evaluations of the composite algorithm (below left)
- We must express the process as an algorithm!



Adaptive refinement

- Two clarifications are needed to state the algorithm
 - How do we keep track of which intervals are good and bad?
 - Answer: Use recursion and we don't need to worry about it
 - Make an algorithm valid for a general interval, then when splitting in two, simply apply the same algorithm to each part
 - How do we quantify a bad interval?
 - <u>Answer</u>: Use error estimates!
 - Choose an ϵ . If the integral error over the interval is $< \epsilon$, it's good
 - If not, it's bad. Split the interval in two and require error $< \epsilon/2$ in each
 - An added bonus: We can guarantee an error of less than ϵ .
 - <u>Problem</u>: We don't want to calculate the maximum derivative of *f*!
 - With a clever trick, we can estimate it instead!

Automatic error estimates

Write S(a, b) for the (non-composite) Simpson's rule.
 Simpson's rule has an error term:

$$\int_a^b f(x) \mathrm{d}x \approx S(a,b) + \frac{M(b-a)^5}{a}.$$

The value of *M* is **unknown** here.

• With
$$c = (b + a)/2$$
,

$$\int_{a}^{c} f(x) dx \approx S(a, c) + \frac{M(b - a)^{5}}{32}$$

$$\int_{c}^{b} f(x) dx \approx S(c, b) + \frac{M(b - a)^{5}}{32}$$

• Adding both integrals also estimates the integral from *a* to *b*

Automatic error estimates

- We have two slightly different estimates of the integral, $\int_{a}^{b} f(x) dx \approx S(a,b) + \frac{M(b-a)^{5}}{16} \approx S(a,c) + S(c,b) + \frac{M(b-a)^{5}}{16}.$
- Use this to estimate the error:

 $|S(a,b) - (S(a,c) + S(c,b))| \approx 15 * \frac{M(b-a)^5}{16}$

- If $|S(a,b) (S(a,c) + S(c,b))| \le 15 * \epsilon$, the **error** in the estimate S(a,c) + S(c,b) is **smaller** than ϵ .
 - If this is true, the interval is good
 - If this is false, we split the interval in two and want an error less than $\epsilon/2$ in each half.

A trick for even more accuracy

• We now have two estimates

$$\int_{a}^{b} f(x) dx \approx S(a,b) + M(b-a)^{5}$$
$$\int_{a}^{b} f(x) dx \approx S(a,c) + S(c,b) + \frac{M(b-a)^{5}}{16}$$

• If we subtract 1/15 of the first from 16/15 of the second:

$$\int_{a}^{b} f(x)dx = \frac{16}{15} \int_{a}^{b} f(x)dx - \frac{1}{15} \int_{a}^{b} f(x)dx$$

$$\approx \frac{16}{15} (S(a,c) + S(c,b)) + \frac{1}{15} M(b-a)^{5} - \frac{1}{15} S(a,b) - \frac{1}{15} M(b-a)^{5}$$

$$= \frac{16}{15} (S(a,c) + S(c,b)) - \frac{1}{15} S(a,b)$$

- Negate one error with another to find a more accurate estimate
- Eliminating errors like this is called Richardson extrapolation
 - General Richardson extrapolation is not curriculum, but useful

Adaptive Simpson's rule algorithm

To approximate the integral over [a, b] with error $< \epsilon$:

- 1. Compute *S*(*a*, *b*).
- 2. Compute S(a, c) and S(c, b).
- 3. Estimate the error in S(a,c) + S(c,b): if $|S(a,b) - (S(a,c) + S(c,b))| < 15 * \epsilon$:

return
$$\frac{16}{15}(S(a,c) + S(c,b)) - \frac{1}{15}S(a,b)$$

else:

estimate the integrals over [a, c] and [c, b] with error less than $\epsilon/2$ return the two estimates added together

Summary

- The adaptive Simpson's rule allows us to compute integrals efficiently using two tricks:
 - Error analysis
 - To identify which intervals have bad estimates
 - To improve current estimates using extrapolation
 - And to do this *without having to compute derivatives*!
 - Recursion
 - Using adaptive Simpson's rule recursively on each subinterval
 - Exploiting the self-similarity of each subproblem

Questions about auditorium exercise

- Regarding more detailed feedback on the exercise(s):
 - Results from automatically corrected exercises (e.g. multiple choice/drag and drop) will be posted online, identifiable by candidate numbers
 - Solution proposals are posted online for comparison
 - If you need more details, you can ask an und.ass. (or stud.ass.) during lab hours
- Re-runs of the auditorium exercises in Inspera:
 - The auditorium exercises cannot be retaken
 - Exams (ordinary/continuation) from 2017 are available here: <u>https://www.ntnu.no/wiki/display/tdt4110/Python+eksamensoppgaver</u>

Upcoming exam preparation

- November 30, 09:00-13:00.
 - Check location at **studentweb** (may not be available yet)
- Theory questions will have **multiple choice** answers
 - Both numerics and programming related
 - Similar to those in Auditorium exercise 2
- «Formula sheet» for the exam will be digital only
 - We will do our best to make it as user friendly as possible

Next two weeks

- Two lectures left
 - **Repetition** and **exam prep** on November 16 and November 23!
 - I will go through the numerics from auditorium exercise 2 in detail
 - Suggest other topics you want me to cover
 - Otherwise, I'll pick them myself

Questions?

