TDT4127 Programming and Numerics Week 44

Solving ordinary differential equations

- More dimensions, stability and accuracy

Some facts about the exam

- November 30, 09:00-13:00.
 - Check location at **studentweb** (may not be available yet)
- The exam will be digital
 - Same as the auditorium exercises.
 - https://innsida.ntnu.no/wiki/-/wiki/norsk/digital+eksamen
- Theory questions will have multiple choice answers
 - Mostly numerics, possibly some programming related
- Theory questions and numerical exercise(s) will be similar to those in Auditorium exercise 2
- You do not need to remember formulas for the numerics
 - But it will of course help if you are familiar with them!

Learning goals

- Goals
 - Solving ordinary differential equations
 - Analysis of algorithms:
 - Explicit Euler method
 - · Implicit Euler method
 - Heun's method
 - Stability and accuracy
- Curriculum
 - Exercise set 9
 - But only in the interpretation of results

Numerical methods for ODEs

- Last week: explicit Euler, implicit Euler, Heun's method
- These schemes numerically solve the ODE

$$\dot{x}(t) = f(x(t), t)$$

The explicit Euler method:

$$x^{j+1} = x^j + hf(x^j, t_i)$$

The implicit Euler method:

$$x^{j+1} = x^j + hf(x^{j+1}, t_{j+1})$$

Heun's method:

$$s^{j+1} = x^{j} + hf(x^{j}, t_{j})$$
$$x^{j+1} = x^{j} + \frac{h}{2} \left(f(x^{j}, t_{j}) + f(s^{j+1}, t_{j+1}) \right)$$

Treating ODEs in many dimensions

• In more than one dimensions, equations are **vectorized** $\dot{x}(t) = f(x(t), t)$

- The methods are exactly the same, but with vectors
- The explicit Euler method:

$$\mathbf{x}^{j+1} = \mathbf{x}^j + h\mathbf{f}(\mathbf{x}^j, t_i)$$

The implicit Euler method:

$$\mathbf{x}^{j+1} = \mathbf{x}^j + h\mathbf{f}(\mathbf{x}^{j+1}, t_{j+1})$$

Heun's method:

$$\mathbf{s}^{j+1} = \mathbf{x}^j + h\mathbf{f}(\mathbf{x}^j, t_j)$$
$$\mathbf{x}^{j+1} = \mathbf{x}^j + \frac{h}{2}(\mathbf{f}(\mathbf{x}^j, t_j) + \mathbf{f}(\mathbf{s}^{j+1}, t_{j+1}))$$

 Implementation difference: vector addition. Numerical solver in several dimensions for the implicit Euler method

Stability

- When solving an ODE numerically, we need to choose an appropriate time step size h (i.e. number of steps N).
 - Too small $h \rightarrow$ takes long time to compute solution
 - Too large h → inaccurate (bad) or unstable (worse) solutions
- What is meant by stability and instability?
 - Instability is when the solution «blows up» when it's not supposed to
 - Stability is when it doesn't
- Test example: Apply the numerical method to the ODE

$$\dot{x}(t) = -\lambda x(t), \qquad \lambda > 0, \qquad x(0) = x_0$$

This equation has the strictly decreasing solution

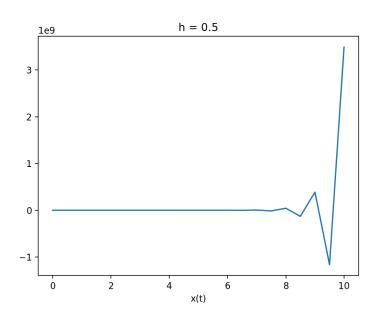
$$x(t) = x_0 e^{-\lambda t}$$

Numerical instability example

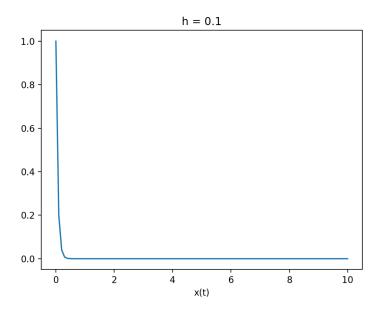
Below: explicit Euler applied with various h to the ODE

$$\dot{x}(t) = -8x(t), \qquad \lambda = 8, \qquad x(0) = 1$$

$$= 8, \qquad x(0) = 1$$



Left: instability.



Right: stability

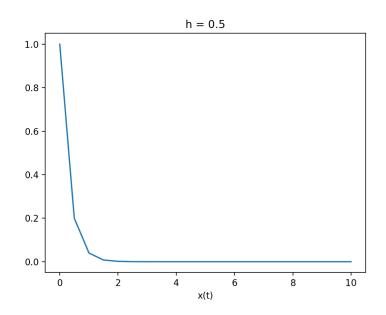
Numerical stability example

Below: implicit Euler applied with various h to the ODE

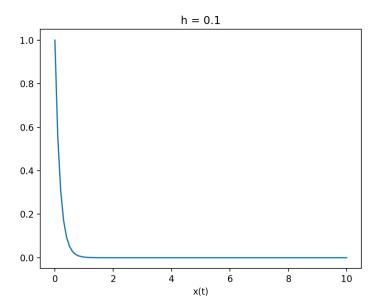
$$\dot{x}(t) = -8x(t), \qquad \lambda = 8, \qquad x(0) = 1$$

$$\lambda = 8$$
,

$$x(0) = 1$$



Left: stability.



Right: stability

Numerical stability explained

So what happens? Compare solutions for this particular ODE:

$$\dot{x}(t) = -\lambda x$$
, $\lambda > 0$, $x(0) = x_0$

Explicit Euler:

$$x_{n+1} = (1 - \lambda h)x_n = (1 - \lambda h)^2 x_{n-1} = \dots = (1 - \lambda h)^n x_0$$

- Blows up if $|1 \lambda h| > 1$, i.e. if $\lambda h > 2$.
 - Must take $h < 2/\lambda!$ This can be restrictive.
- Implicit Euler:

$$x_{n+1} = x_n - \lambda h x_{n+1}$$

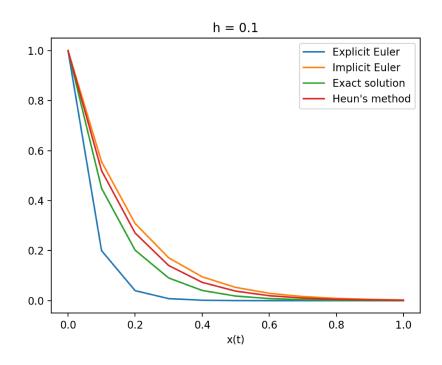
$$x_{n+1} = \frac{1}{1 + \lambda h} x_n = \left(\frac{1}{1 + \lambda h}\right)^2 x_{n-1} = \dots = \left(\frac{1}{1 + \lambda h}\right)^n x_0$$

• Always decreasing, no matter the value of λ or h

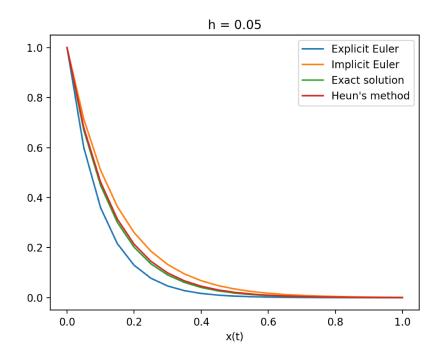
Stability summarized

- Intuition: different methods have different stability properties.
 - Some methods are stable for larger or even all h
 - There is a large literature on this for Runge-Kutta methods
 - Implicit methods are typically more stable than explicit ones
 - No explicit method is stable for all h
 - All methods work with small enough h
 - But it may mean a restrictively very long computation time
- What about Heun's method?
 - More stable than explicit Euler, but it is explicit and has restrictions
- Practical tips: If you see unwanted blow-up or oscillations, try a smaller h first, before switching to another solver.

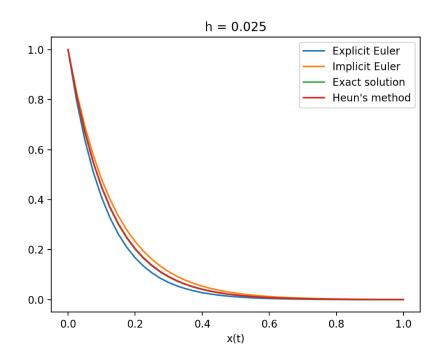
- Assuming our solutions don't blow up, the next question is: how accurate are they?
- Accuracy is a function of h



- Assuming our solutions don't blow up, the next question is: how accurate are they?
- Accuracy is a function of h



- Assuming our solutions don't blow up, the next question is: how accurate are they?
- Accuracy is a function of h



Accuracy is measured in terms of the global error

$$e_j = |x(t_j) - x_j|, t_j = jh$$

• A method is said to be of **order** p if for some constant C_j , $e_i \le h^p C_i$

Explicit and implicit Euler are both of order 1:

$$e_j^{\text{Euler}} \leq hC_j$$
, $C_j = \frac{e^{L(t_j - t_0)} - 1}{L}$

Heun's method is of order 2:

$$e_j^{\text{Heun}} \leq h^2 C_j, \qquad C_j = \frac{e^{L(t_j - t_0)} - 1}{L}$$

 Note: These C_j estimates are very conservative and should not be used in practice. The order is what's important.

- **Practical consequence**: order p methods improve errors by a factor 2^p when halving the step size.
- The table below demonstrates the orders by considering the **global error** at T=1 for the test problem from before.
- explicit/implicit Euler: p = 1, Heun's method: p = 2

h	Explicit Euler	Implicit Euler	Heun's method
0.01	$9.62*10^{-5}$	11.91*10 ⁻⁵	$30.54*10^{-7}$
0.005	$5.09*10^{-5}$	$5.66*10^{-5}$	$7.38*10^{-7}$
0.0025	$2.61*10^{-5}$	$2.76*10^{-5}$	$1.82*10^{-7}$

- High-order methods gain a lot from smaller time steps!
 - Methods with order 4 are often used!

Summary of ODE solvers

- Explicit/implicit methods
 - Explicit: Can calculate directly. Explicit Euler and Heun's method
 - Implicit: Need to solve an equation per step. Implicit Euler
- Multi-stage
 - Methods can have more than one stage. Heun's method
- Stability
 - Does the method blow up when applied to $\dot{x}(t) = -\lambda x$?
 - Explicit methods are unstable for too large step sizes h
 - Implicit methods are generally more stable
- Accuracy
 - A method is **order** p accurate if $e_j \leq h^p C_j$.
 - implicit/explicit Euler methods are order 1
 - Heun's method is order 2
 - Can construct integration methods of even higher order

Next weeks

- Three lectures left
 - Adaptive Simpson next week (November 9)
 - Last regular lecture
 - Repetition and exam prep on November 16 and November 23!
 - I will go through the numerics from auditorium exercise 2 in detail
 - Suggest other topics you want me to cover
 - · Otherwise, I'll pick them myself

Questions?