
TDT4127 Programming and Numerics
Week 43
Solving ordinary differential equations

2

Important note

• Next week: auditorium exercise 2
– Bring your own computer, or borrow one from NTNU!
– No computer lab hours or exercise lectures next week
– Instead, do some exercises live in an auditorium (2 hours)
– Day: Friday, November 2

• Due to space constraints, you are given a fixed time/place
• Check this link to see where/when you should show up:
https://www.ntnu.no/wiki/pages/viewpage.action?pageId=83234235

– Install Safe Exam Browser (link above)
• One of the two auditorium exercises must be approved

in order to take the exam
– Also, we use Inspera to get acquainted before the exam
– New kinds of exercises being tested this time!

https://www.ntnu.no/wiki/pages/viewpage.action?pageId=83234235

3

Learning goals

• Goals
– Solving ordinary differential equations
– Algorithm:

• Explicit Euler method
• Implicit Euler method
• Heun’s method

• Curriculum
– Exercise set 9
– Programming for Computations - Python

• Ch. 4.1, 4.2

4

Ordinary differential equations

• With Ordinary Differential Equations (ODEs) we know
the time derivative of a function, "̇, but not " itself:

"̇ # = % ", #
• Ex: The speed of an object is known but not the position
• To solve an ODE we need the information of an initial

value " 0 = "(
– It could be that we have knowledge of " #(, #(≠ 0 instead

• This does not change anything

• The solution to an ODE is a time-dependent function
" # valid for # > 0

5

How to solve an ODE numerically

• The solution to an ODE is a time-dependent function ! "
valid for all " > 0

• Numerical tradeoff no. 1: How about we settle for getting
solutions only at snapshots in time?

• Introduce discrete times 0 = "& < "(< ") < . . .
• For simplicity, space them with equal time step sizes ℎ:

", = -ℎ
• Numerical tradeoff no. 2: How about we solve the ODE for a

limited time only?
• Instead of " ∈ 0,∞ , let "1 ∈ (0, 3)

– Gives us a finite amount of time steps
– Specify stopping time 3 and no. of time steps 5, then take ℎ = 3/5

6

Geometric description of explicit Euler

• Starting at !", follow the tangent
line of !($) until $&

• At the next point, !&, calculate
the tangent of the solution with
initial condition ! $& = !&

• Follow this tangent line until $(,
call this point !(, etc.

7

Formulaic description of explicit Euler

• Starting with an ODE
"̇($) = ' "($), $

we approximate, using Taylor’s theorem:
" $ + ℎ ≈ " $ + ℎ "̇ $ = " $ + ℎ' "($), $

• Starting at $, = 0 this means
" ℎ ≈ " 0 + ℎ'(" 0 , 0)
" 2ℎ ≈ " ℎ + ℎ'(" ℎ , ℎ)

⋮
" $012 ≈ " $0 + ℎ'(" $0 , $0)

• This leads to the explicit Euler scheme
"012 = "0 + ℎ'("0, $0)

8

The explicit Euler algorithm

1. Set the initial condition !", choose the number of time
steps # and the stopping time $. Compute ℎ = $/#

2. for j in range(0,N):
!()* = !(+ ℎ,(!(, /()

• This scheme is explicit: You can calculate the right-hand
side directly.

• The step size ℎ cannot be too large (examples next
week). The smaller ℎ is (the larger # is), the better the
approximations.
– Intuition: We are taking smaller steps, thus making smaller errors

9

The implicit Euler method

• How about another derivative: !(#$%&) instead of !(#$)?
• This amounts to using Taylor’s theorem differently:

(− ℎ ≈ # (− ℎ! # (, (
⇒ # (≈ # (− ℎ + ℎ!(# (, ().

• Starting at t = ℎ this means we can take
ℎ ≈ # 0 + ℎ!(# ℎ , ℎ)

2ℎ ≈ # ℎ + ℎ!(# 2ℎ , 2ℎ)
⋮

($%& ≈ # ($ + ℎ!(# ($%& , ($%&)
• This leads to the implicit Euler scheme

#$%& = #$ + ℎ!(#$%&, ($%&)

10

The implicit Euler algorithm

1. Set the initial condition !", choose the number of time
steps # and the stopping time $. Compute ℎ = $/#

2. for j in range(0,N):
solve !()* = !(+ ℎ,(!()*, /()*)

• This scheme is implicit: both sides of the expression
depend on !()* and so we must solve an equation for
!()* each step.

• The step size ℎ can be larger here than in the explicit
Euler method (more next week). Still: the smaller ℎ is
(the larger # is), the better the approximations.

11

Heun’s method

• Explicit Euler uses information from the «old» point only
• Implicit Euler uses information from the «new» point but

requires solution of an equation each step
• We can make a compromise with Heun’s method

– Take a step with explicit Euler to find an inexact solution ("#$%, '#$%)
– Use the mean of the derivatives at ("#,)#) and ("#$%, '#$%)
– Follow this to get a better estimate:

'#$% =)# + ℎ-)#, "#
)#$% =)# + ℎ -)#, "# + - '#$%, "#$%

2
• This is a two-stage, explicit method

– Requires two step calculations
• An example of a Runge-Kutta method

12

The form of a general ODE solver

• Explicit Euler, implicit Euler and Heun’s method all
belong to the class of Runge–Kutta methods

• Runge–Kutta methods can be labelled as
– Explicit/implicit

• Explicit methods are fast and compute straightforward, but have
step size restrictions

• Implicit methods are slower due to requiring equation solving, but
are generally more stable. More suited for tough problems

– !-stage
• Need to calculate ! steps to get "#$%
• Like Heun’s method, a 2-stage method
• Explicit/implicit Euler are 1-stage methods

13

Implementation of ODE solvers

1. Initialize variables (", $, ℎ, &')
2. A for loop going through) from 1 to "
3. A function for taking time steps, depending on the

method
– Number of stages, implicit/explicit etc.

• Stopping condition?
– Not necessary, we are taking N steps and specifying how far we

want to go by that
– …But there are methods that could require stopping conditions.

• Adaptive methods (step sizes can vary from step to step)
• Not curriculum, but you may encounter them e.g. in MATLAB

• Skeleton code: ODE_solver_skeleton.py

14

Summary

• ODEs can be solved by numerical methods. We have seen
three:
– Explicit Euler is straightforward and simple, but not stable

• Requires small time steps to work at all
– Implicit Euler requires the solution of an equation every step, but is

far more stable
• No restrictions on time steps

– Heun’s method tries to improve upon these methods
• It’s an explicit two-stage method, has better stability properties than

explicit Euler but not as good as the implicit Euler method
– Lots of other ODE solver algorithms exist, e.g. Runge-Kutta

methods
• Next time:

– Generalizing to several dimensions (really easy, actually!)
– Closer analysis of today’s methods

• Stability, accuracy etc.

15

Questions?

