TDT4127 Programming and Numerics
Week 43

Solving ordinary differential equations

Kunnskap for en bedre verden

®@NTNU



Important note

* Next week: auditorium exercise 2
— Bring your own computer, or borrow one from NTNU!
— No computer lab hours or exercise lectures next week
— Instead, do some exercises live in an auditorium (2 hours)

— Day: Friday, November 2
» Due to space constraints, you are given a fixed time/place
» Check this link to see where/when you should show up:
https://www.ntnu.no/wiki/pages/viewpage.action?pageld=83234235

— Install Safe Exam Browser (link above)

* One of the two auditorium exercises must be approved
In order to take the exam

— Also, we use Inspera to get acquainted before the exam
— New kinds of exercises being tested this time!

2 ®@NTNU



https://www.ntnu.no/wiki/pages/viewpage.action?pageId=83234235

Learning goals

+ Goals
— Solving ordinary differential equations
— Algorithm:
« Explicit Euler method
* Implicit Euler method

e Curriculum
— EXxercise set 9

— Programming for Computations - Python
* Ch.4.1,4.2

3 ®@NTNU



Ordinary differential equations

With Ordinary Differential Equations (ODEs) we know
the time derivative of a function, x, but not x itself:

x(t) = f(x,t)
« Ex: The speed of an object is known but not the position

* To solve an ODE we need the information of an initial
value x(0) = x,
— It could be that we have knowledge of x(t,), ty, # 0 instead
» This does not change anything

* The solution to an ODE is a time-dependent function
x(t) valid fort > 0

4 ®@NTNU



How to solve an ODE numerically

* The solution to an ODE is a time-dependent function x(t)
valid forall t > 0

* Numerical tradeoff no. 1: How about we settle for getting
solutions only at snapshots in time?

* Introduce discretetimes 0 =t;, <t; <t, <...

« For simplicity, space them with equal time step sizes h:

* Numerical tradeoff no. 2: How about we solve the ODE for a
limited time only?

* Instead of t € (0, ), lett;, € (0,T)
— Gives us a finite amount of time steps
— Specify stopping time T and no. of time steps N, then take h = T/N

5 ®@NTNU




Geometric description of explicit Euler

1.1

 Starting at x, follow the tangent
line of x(t) until t;

* At the next point, x;, calculate 08¢
the tangent of the solution with 07}
initial condition x(t,) = x; osl

. . 0.5 4 m——— Exact solution

* Follow this tangent line until ¢,, 1 —— Explicit Euler

call this point x,, etc.

0 0.2 0.4 0.6 0.8 1

: ®@NTNU



Formulaic description of explicit Euler

« Starting with an ODE
x(t) = f(x(6),t)
we approximate, using Taylor’s theorem:
x(t+h) =x(t)+hx(t) =x(t)+ hf(x(t),t)
« Starting at t, = 0 this means
x(h) = x(0) + hf (x(0),0)
x(2h) = x(h) + hf (x(h), h)

x(tir1) = x(t;) + hf Ce(t), 1)
e This leads to the prlicit .Euler sc_heme
xIt =xJ + hf (2, ty)

d ®@NTNU



The explicit Euler algorithm

1. Set the initial condition x,, choose the number of time
steps N and the stopping time T. Compute h =T /N

2. forjinrange(O,N):
It = %) + hf (2, t))

« This scheme is explicit. You can calculate the right-hand
side directly.

« The step size h cannot be too large (examples next
week). The smaller h is (the larger N is), the better the
approximations.

— Intuition: We are taking smaller steps, thus making smaller errors

8 ®@NTNU



The implicit Euler method

 How about another derivative: f(x/*1) instead of f(x/)?
« This amounts to using Taylor’s theorem differently:
x(t —h) = x(t) — hf(x(t),t)
= x(t) = x(t — h) + hf (x(t),t).
« Starting at t = h this means we can take
x(h) = x(0) + hf (x(h), h)
x(2h) = x(h) + hf (x(2h), 2h)

x(te1) = x(4) + hf G, tan)

e This leads to the implici.t Euler s_cheme
x It =x + hf (/7 t41)

9 ®@NTNU



The implicit Euler algorithm

1. Set the initial condition x,, choose the number of time
steps N and the stopping time T. Compute h =T /N

2. forjinrange(0,N):
solve x/*1 = xJ + hf (x7*%, t;41)

 This scheme is implicit. both sides of the expression
depend on x’/** and so we must solve an equation for
xIT1 each step.

* The step size h can be larger here than in the explicit
Euler method (more next week). Still: the smaller h is
(the larger N is), the better the approximations.




Heun’s method

« Explicit Euler uses information from the «old» point only

* Implicit Euler uses information from the «new» point but
requires solution of an equation each step
 We can make a compromise with Heun’s method
— Take a step with explicit Euler to find an inexact solution (tj+1,sj+1)
— Use the mean of the derivatives at (¢, x/) and (tj41,s/™)
— Follow this to get a better estimate:
s/t =xJ + hf(x,t;)
fd, ) + £ 4aa)

xJtt=xJ + h

2
« This is a two-stage, explicit method

— Requires two step calculations
* An example of a Runge-Kutta method




The form of a general ODE solver

« Explicit Euler, implicit Euler and Heun’s method all
belong to the class of Runge—Kutta methods

* Runge—Kutta methods can be labelled as
— Explicit/implicit
« Explicit methods are fast and compute straightforward, but have
step size restrictions

* Implicit methods are slower due to requiring equation solving, but
are generally more stable. More suited for tough problems

— K-stage
 Need to calculate K steps to get x/*1
« Like Heun’s method, a 2-stage method
« Explicit/implicit Euler are 1-stage methods




Implementation of ODE solvers

1. Initialize variables (N, T, h, x;)
2. A for loop going through j from 1to N
3. A function for taking time steps, depending on the

method
— Number of stages, implicit/explicit etc.

« Stopping condition?
— Not necessary, we are taking N steps and specifying how far we

want to go by that
— ...But there are methods that could require stopping conditions.

» Adaptive methods (step sizes can vary from step to step)
* Not curriculum, but you may encounter them e.g. in MATLAB

« Skeleton code: ODE_solver_skeleton.py




Summary

« ODEs can be solved by numerical methods. We have seen
three:

— Explicit Euler is straightforward and simple, but not stable
* Requires small time steps to work at all

— Implicit Euler requires the solution of an equation every step, but is
far more stable

* No restrictions on time steps
— Heun’s method tries to improve upon these methods

 It's an explicit two-stage method, has better stability properties than
explicit Euler but not as good as the implicit Euler method

— Lots of other ODE solver algorithms exist, e.g. Runge-Kutta
methods

* Nexttime:
— Generalizing to several dimensions (really easy, actually!)

— Closer analysis of today’s methods
 Stability, accuracy etc.




Questions?

15 ®@NTNU



