TDT4127 Programming and Numerics Week 43

Solving ordinary differential equations

Important note

- Next week: auditorium exercise 2
 - Bring your own computer, or borrow one from NTNU!
 - No computer lab hours or exercise lectures next week
 - Instead, do some exercises live in an **auditorium** (2 hours)
 - Day: Friday, November 2
 - Due to space constraints, you are given a **fixed time/place**
 - Check this link to see where/when you should show up: https://www.ntnu.no/wiki/pages/viewpage.action?pageId=83234235
 - Install Safe Exam Browser (link above)
- One of the two auditorium exercises must be approved in order to take the exam
 - Also, we use Inspera to get acquainted before the exam
 - New kinds of exercises being tested this time!

Learning goals

- Goals
 - Solving ordinary differential equations
 - Algorithm:
 - Explicit Euler method
 - Implicit Euler method
- Curriculum
 - Exercise set 9
 - Programming for Computations Python
 - Ch. 4.1, 4.2

Ordinary differential equations

- With Ordinary Differential Equations (**ODEs**) we know the **time derivative** of a function, \dot{x} , but not x itself: $\dot{x}(t) = f(x, t)$
- Ex: The *speed* of an object is known but not the *position*
- To solve an ODE we need the information of an *initial* value $x(0) = x_0$
 - It could be that we have knowledge of $x(t_0)$, $t_0 \neq 0$ instead
 - This does not change anything
- The solution to an ODE is a time-dependent function x(t) valid for t > 0

How to solve an ODE numerically

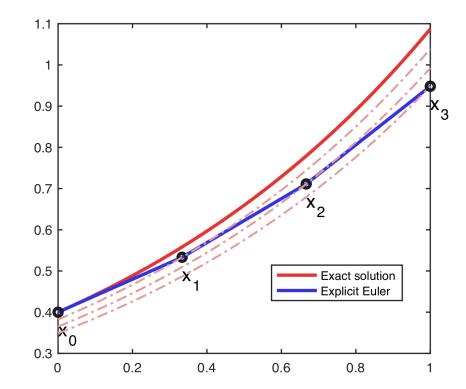
- The solution to an ODE is a time-dependent function x(t) valid for all t > 0
- <u>Numerical tradeoff no. 1:</u> How about we settle for getting solutions only at snapshots in time?
- Introduce *discrete* times $0 = t_0 < t_1 < t_2 < \dots$
- For simplicity, space them with equal time step sizes *h*:

 $t_j = jh$

- <u>Numerical tradeoff no. 2:</u> How about we solve the ODE for a limited time only?
- Instead of $t \in (0, \infty)$, let $t_k \in (0, T)$
 - Gives us a finite amount of time steps
 - Specify stopping time T and no. of time steps N, then take h = T/N

Geometric description of explicit Euler

- Starting at x_0 , follow the tangent line of x(t) until t_1
- At the next point, x_1 , calculate the tangent of the solution with initial condition $x(t_1) = x_1$
- Follow this tangent line until t₂, call this point x₂, etc.



Formulaic description of explicit Euler

• Starting with an **ODE**

 $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), t)$

we approximate, using *Taylor's theorem*:

 $\mathbf{x}(t+h) \approx \mathbf{x}(t) + h \, \dot{\mathbf{x}}(t) = \mathbf{x}(t) + h f(\mathbf{x}(t), t)$

- Starting at $t_0 = 0$ this means $x(h) \approx x(0) + hf(x(0), 0)$ $x(2h) \approx x(h) + hf(x(h), h)$ \vdots $x(t_{j+1}) \approx x(t_j) + hf(x(t_j), t_j)$
- This leads to the **explicit Euler scheme** $x^{j+1} = x^{j} + hf(x^{j}, t_{j})$

The explicit Euler algorithm

- 1. Set the initial condition x_0 , choose the number of time steps *N* and the stopping time *T*. Compute h = T/N
- 2. for j in range(0, N):

 $x^{j+1} = x^j + hf(x^j, t_j)$

- This scheme is *explicit*: You can calculate the right-hand side directly.
- The step size *h* cannot be too large (examples next week). The smaller *h* is (the larger *N* is), the better the approximations.
 - Intuition: We are taking smaller steps, thus making smaller errors

The implicit Euler method

- How about another derivative: $f(x^{j+1})$ instead of $f(x^j)$?
- This amounts to using Taylor's theorem differently: $\frac{x(t-h) \approx x(t) - hf(x(t), t)}{\Rightarrow x(t) \approx x(t-h) + hf(x(t), t)}$
- Starting at t = h this means we can take $x(h) \approx x(0) + hf(x(h), h)$ $x(2h) \approx x(h) + hf(x(2h), 2h)$ \vdots
 - $\mathbf{x}(t_{j+1}) \approx \mathbf{x}(t_j) + hf(\mathbf{x}(t_{j+1}), t_{j+1})$
- This leads to the implicit Euler scheme $x^{j+1} = x^j + hf(x^{j+1}, t_{j+1})$

The implicit Euler algorithm

- 1. Set the initial condition x_0 , choose the number of time steps *N* and the stopping time *T*. Compute h = T/N
- 2. for j in range(0, N):

<u>solve</u> $x^{j+1} = x^j + hf(x^{j+1}, t_{j+1})$

- This scheme is *implicit*: both sides of the expression depend on x^{j+1} and so we must solve an equation for x^{j+1} each step.
- The step size *h* can be larger here than in the explicit Euler method (more next week). Still: the smaller *h* is (the larger *N* is), the better the approximations.

Heun's method

- Explicit Euler uses information from the «old» point only
- Implicit Euler uses information from the «new» point but requires solution of an equation each step
- We can make a compromise with Heun's method
 - Take a step with explicit Euler to find an inexact solution (t_{j+1}, s^{j+1})
 - Use the mean of the derivatives at (t_j, \mathbf{x}^j) and $(t_{j+1}, \mathbf{s}^{j+1})$
 - Follow this to get a better estimate:

$$s^{j+1} = x^{j} + hf(x^{j}, t_{j})$$
$$x^{j+1} = x^{j} + h\frac{f(x^{j}, t_{j}) + f(s^{j+1}, t_{j+1})}{2}$$

- This is a two-stage, explicit method
 - Requires two step calculations
- An example of a Runge-Kutta method

The form of a general ODE solver

- Explicit Euler, implicit Euler and Heun's method all belong to the class of Runge–Kutta methods
- Runge–Kutta methods can be labelled as
 - Explicit/implicit
 - Explicit methods are fast and compute straightforward, but have step size restrictions
 - Implicit methods are slower due to requiring equation solving, but are generally more stable. More suited for tough problems
 - K-stage
 - Need to calculate K steps to get x^{j+1}
 - Like Heun's method, a 2-stage method
 - Explicit/implicit Euler are 1-stage methods

Implementation of ODE solvers

- 1. Initialize variables (N, T, h, x_0)
- 2. A for loop going through j from 1 to N
- 3. A function for taking time steps, depending on the method
 - Number of stages, implicit/explicit etc.
- Stopping condition?
 - Not necessary, we are taking N steps and specifying how far we want to go by that
 - ...But there are methods that could require stopping conditions.
 - Adaptive methods (step sizes can vary from step to step)
 - Not curriculum, but you may encounter them e.g. in MATLAB
- Skeleton code: **ODE_solver_skeleton.py**

Summary

- ODEs can be solved by numerical methods. We have seen three:
 - Explicit Euler is straightforward and simple, but not stable
 - Requires small time steps to work at all
 - Implicit Euler requires the solution of an equation every step, but is far more stable
 - No restrictions on time steps
 - Heun's method tries to improve upon these methods
 - It's an explicit two-stage method, has better stability properties than explicit Euler but not as good as the implicit Euler method
 - Lots of other ODE solver algorithms exist, e.g. Runge-Kutta methods
- Next time:
 - Generalizing to several dimensions (really easy, actually!)
 - Closer analysis of today's methods
 - Stability, accuracy etc.

Questions?

