
TDT4127 Programming and Numerics
Week 42
Newton’s method in multiple dimensions

2

Learning goals

• Goals
– Solving nonlinear systems of equations
– Algorithm:

• Newton’s method for systems

• Curriculum
– Exercise set 7
– Programming for Computations - Python

• Ch. 6.6

3

Newton’s method

• Week 38-39: Newton’s method for scalar equations:

!"#$ = !" − ' !"
'(!"

• There is a natural extension to multiple dimensions
– Topic of this week’s lecture

• Will only cover the formulation of it, not theory around

4

Systems of equations

• A system of (nonlinear) equations:
!" #", #%, … , #' = 0
!% #", #%, … , #' = 0

⋮
!' #", #%, … , #' = 0

• Unlike linear systems, we cannot say more about the
structure of the !+, and can’t write it in matrix-vector form.

• We can write the system more compactly with vectors:

, =
#"
#%
⋮
#'

, - , =
!"(,)
!% ,
⋮

!' ,
= 0

5

Newton’s method for systems

• We want to solve the nonlinear system of equations
! " = $

• What is the trick we’ve been using all along?
– That’s right – linearization!

• Idea: Exchange the nonlinear system of equations with
a linear system, and solve

! " ≈ & " = $
• Step 1: Find an approximate linear system & "

6

Linear approximation

• In the 1D case, Taylor’s theorem gives a linear
approximation:

! " ≈ ! "$ + !& "$ " − "$
• In several dimensions, Taylor’s theorem also gives a

linear approximation, using partial derivatives:

• !() ≈ !()$ + *+,
*-.

)$ "/ − "/$

+ 0!(
0"1

()$)("1 − "1$) + ⋯+ 0!(
0"5

()$)("5 − "5$)

7

Linear approximation

• So, each equation is approximated by
!" # = %" + '"" (" − ("* + '"+((+ − (+*) + ⋯+ '"/((/ − (/*)
!+ # = %+ + '+" (" − ("* + '++((+ − (+*) + ⋯+ '+/((/ − (/*)

⋮
!/ # = %/ + '/" (" − ("* + '/+((+ − (+*) + ⋯+ '//((/ − (/*)

where

%1 = 21 #* , '14 =
521
5(4

(#*)
• This is a linear system!

6 # = 7 + 8 # − #9

8

Newton’s method for systems

• This is a linear system!
! " = $ + & " − "(

• The matrix & is called the Jacobian of) and is often
written *)(",). In general:

*) . =

/01
/21

(.) /01
/23

(.) ⋯ /01
/25

(.)
/03
/21

(.) /03
/23

(.) ⋯ /03
/25

(.)
⋮ ⋮ ⋱ ⋮

/05
/21

(.) /05
/23

(.) ⋯ /05
/25

(.)

9

Newton’s method for systems

• This is a linear system!
! " = $ + & " − "(

• Note also that $ =)("+) so we have, more precisely:
! " =) "+ + -)("+) " − "(

• We solve ! " = . in two steps:

1. Solve the linear system -) "+ / = −) "+
2. Compute " = "(+ /

10

Newton’s method for systems

• We could also directly solve
! "# + %! "# " − "' =)

by writing
" = "# − %! "#

*+! "#
• This formulation is a bit misleading, though – we don’t

want to actually compute %! "#
*+, just solve the linear

system! Hence the two-step formulation from last slide.

11

Newton’s method for systems

• Solving ! " = $ does not give us the exact solution
since ! only approximates %, but we get a method from
it:

"&'(= ") − +% ")
,(% ")

• Note the similarities with 1D-Newton:

-)'. = -) − / -)
/0 -)

• As with 1D-Newton, we require stopping conditions

12

Stopping conditions

• 1D Newton’s method: Stop when
|"#$% − "#| < (, or * "#$% < +.

…or a combination of the two
• Here: stop on reaching one or more of the following:

– |"-#$% − "-#| < (for all .

– ("0#$%−"0#)2 + ("%#$%−"%#)2 + ⋯+ ("5#$%−"5#)2 < (
– *- 67$8 < + for all .
– *0 67$8 9 + *% 67$8 9 + …+ *5 67$8 2 < +

• We can pick and choose stopping conditions based on
what seems reasonable for the problem.

13

Programming Newton’s for systems

1. Write code for evaluating !" #$ and " #$
2. Choose an initial guess #%
3. Iterate until stopping condition is met:

1. Solve the linear system !" #$ & = −" #$
2. Compute #)*+ = #) + &

Demonstration: newtonSkeleton.py

14

Summary

• We can generalize Newton’s method to higher-
dimensional equations
– Relies on a linearization of the problem
– Uses the Jacobian of the function we want to find a root of

• Newton’s method for systems requires vectors and
matrices, and each step requires solution of a linear
system

• Implementation is best done using several subfunctions

15

Questions?

