TDT4127 Programming and Numerics
Week 42

Newton’s method in multiple dimensions

Kunnskap for en bedre verden

®@NTNU

Learning goals

+ Goals
— Solving nonlinear systems of equations

— Algorithm:
 Newton’s method for systems

e Curriculum
— EXxercise set 7

— Programming for Computations - Python
* Ch.6.6

2 ®@NTNU

Newton’s method

 Week 38-39: Newton’s method for scalar equations:
f(x"*)
k+1 — yk _
f1G)
* There is a natural extension to multiple dimensions
— Topic of this week’s lecture
« Wil only cover the formulation of it, not theory around

X

3 ®@NTNU

Systems of equations

« A system of (nonlinear) equations:
fo(xO,xl, ...,xn) =(
f]_(xo,xl, ...,xn) =0

frn(x, %1, ey x) =0
* Unlike linear systems, we cannot say more about the
structure of the f;, and can’t write it in matrix-vector form.

* We can write the system more compactly with vectors:

X fo(x)
X = x1 , flx) = fl(:x) =0
| Xn —fn(x)-

4 ®@NTNU

Newton’s method for systems

We want to solve the nonlinear system of equations
flx)=0
What is the trick we’ve been using all along?
— That’s right — linearization!

|dea: Exchange the nonlinear system of equations with
a linear system, and solve

fix) = g(x) =0

Step 1: Find an approximate linear system g(x)

5 ®@NTNU

Linear approximation

* In the 1D case, Taylor's theorem gives a linear
approximation:

FG) =~ f(x)+ F/(x")(x — x¥)
* |In several dimensions, Taylor’'s theorem also gives a
linear approximation, using partial derivatives:

© G = () + 52 (5 (0 —)

of;

el COICROR R P COICAEE)

6 ®@NTNU

Linear approximation

* S0, each equation is approximated by
Go(xX) = by + age(xo — x5) + ag1 (1 — x5 + =+ + gy (xn — x55)
g1(x) = by + aso(xo — x5) + a11(xy — x1) + -+ + a3, (xy — x55)

gn(x) — bn + anO(xO _ xg)() + anl(xl - x{() + et ann(xn - x%)

where
df;
bj = fi(x*), ;= _ax]l (x")

* This is a linear system!
g(x) =b+ A(x — x*)

7 ®@NTNU

Newton’s method for systems

* This is a linear system!
gx) =b+ A(x — x)
« The matrix A is called the Jacobian of f and is often
written J¢(x). In general:

0fo dfo dfo]

9%y) ox,) - %,)
df1 df1 df

I/ () = E()’) a—xl()’) 6_xn(y)
of, _ of. . of.

Em) 9%,) - %,)

8 ®@NTNU

Newton’s method for systems

* This is a linear system!
gx) =b+ A(x — x)
 Note also that b = f(x*) so we have, more precisely:
g(x) = f(x¥) +J;(x0) (x — x)

« We solve g(x) = 0 in two steps:

1. Solve the linear system J¢(x*)y = —f(x*)
2. Compute x = x¥ + y

9 ®@NTNU

Newton’s method for systems

« We could also directly solve
F) + 1 () (x = x4) = 0
by writing
x = xK — () f (%)

« This formulation is a bit misleading, though — we don’t

want to actually compute]f(x")_l, just solve the linear
system! Hence the two-step formulation from last slide.

Newton’s method for systems

« Solving g(x) = 0 does not give us the exact solution
since g only approximates f, but we get a method from
it:

-1
,RHL 4k _]f(xk) f(xk)
* Note the similarities with 1D-Newton:

k+1 — ok f(x")

X

VHED

* As with 1D-Newton, we require stopping conditions

Stopping conditions

* 1D Newton’s method: Stop when
|k —xk| < 5, 0r [F(xF)| < e
...or a combination of the two
« Here: stop on reaching one or more of the following:

— |t —xf| < forallj

- \/ (o T =x)? + (ef T =x)2 + o+ G)2 <6

— |fi(x*1)| < e forall

= VHEHD)Z 4+ fGH2 + L+ f (D2 <€

 We can pick and choose stopping conditions based on
what seems reasonable for the problem.

Programming Newton'’s for systems

1. Write code for evaluating J¢(x*) and f(x")

2. Choose an initial guess x°

3. lterate until stopping condition is met:
1. Solve the linear system J(x*)y = —f(x")
2. Compute x**1 = xk +y

Demonstration: newtonSkeleton.py

Summary

* We can generalize Newton’s method to higher-
dimensional equations
— Relies on a linearization of the problem
— Uses the Jacobian of the function we want to find a root of

 Newton’s method for systems requires vectors and
matrices, and each step requires solution of a linear
system

« Implementation is best done using several subfunctions

Questions?

15 ®@NTNU

