TDT4127 Programming and Numerics

 Week 42Newton's method in multiple dimensions

Learning goals

- Goals
- Solving nonlinear systems of equations
- Algorithm:
- Newton's method for systems
- Curriculum
- Exercise set 7
- Programming for Computations - Python
- Ch. 6.6

Newton's method

- Week 38-39: Newton's method for scalar equations:

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}
$$

- There is a natural extension to multiple dimensions
- Topic of this week's lecture
- Will only cover the formulation of it, not theory around

Systems of equations

- A system of (nonlinear) equations:

$$
\begin{gathered}
f_{0}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0 \\
f_{1}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

- Unlike linear systems, we cannot say more about the structure of the f_{i}, and can't write it in matrix-vector form.
- We can write the system more compactly with vectors:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad \boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
f_{0}(\boldsymbol{x}) \\
f_{1}(\boldsymbol{x}) \\
\vdots \\
f_{n}(\boldsymbol{x})
\end{array}\right]=\mathbf{0}
$$

Newton's method for systems

- We want to solve the nonlinear system of equations

$$
f(x)=0
$$

- What is the trick we've been using all along?
- That's right - linearization!
- Idea: Exchange the nonlinear system of equations with a linear system, and solve

$$
f(x) \approx g(x)=\mathbf{0}
$$

- Step 1: Find an approximate linear system $g(x)$

Linear approximation

- In the 1D case, Taylor's theorem gives a linear approximation:

$$
f(x) \approx f\left(x^{k}\right)+f^{\prime}\left(x^{k}\right)\left(x-x^{k}\right)
$$

- In several dimensions, Taylor's theorem also gives a linear approximation, using partial derivatives:
- $f_{j}(x) \approx f_{j}\left(x^{k}\right)+\frac{\partial f_{j}}{\partial x_{0}}\left(x^{k}\right)\left(x_{0}-x_{0}^{k}\right)$

$$
+\frac{\partial f_{j}}{\partial x_{1}}\left(x^{k}\right)\left(x_{1}-x_{1}^{k}\right)+\cdots+\frac{\partial f_{j}}{\partial x_{n}}\left(x^{k}\right)\left(x_{n}-x_{n}^{k}\right)
$$

Linear approximation

- So, each equation is approximated by
$g_{0}(x)=b_{0}+a_{00}\left(x_{0}-x_{0}^{k}\right)+a_{01}\left(x_{1}-x_{1}^{k}\right)+\cdots+a_{0 n}\left(x_{n}-x_{n}^{k}\right)$
$g_{1}(\boldsymbol{x})=b_{1}+a_{10}\left(x_{0}-x_{0}^{k}\right)+a_{11}\left(x_{1}-x_{1}^{k}\right)+\cdots+a_{1 n}\left(x_{n}-x_{n}^{k}\right)$
$g_{n}(\boldsymbol{x})=b_{n}+a_{n 0}\left(x_{0}-x_{0}^{k}\right)+a_{n 1}\left(x_{1}-x_{1}^{k}\right)+\cdots+a_{n n}\left(x_{n}-x_{n}^{k}\right)$ where

$$
b_{j}=f_{j}\left(x^{k}\right), \quad a_{j l}=\frac{\partial f_{j}}{\partial x_{l}}\left(x^{k}\right)
$$

- This is a linear system!

$$
g(x)=b+A\left(x-x^{k}\right)
$$

Newton's method for systems

- This is a linear system!

$$
g(x)=b+A\left(x-x^{k}\right)
$$

- The matrix A is called the Jacobian of f and is often written $J_{f}\left(x^{k}\right)$. In general:

$$
J_{f}(y)=\left[\begin{array}{cccc}
\frac{\partial f_{0}}{\partial x_{0}}(y) & \frac{\partial f_{0}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{0}}{\partial x_{n}}(y) \\
\frac{\partial f_{1}}{\partial x_{0}}(y) & \frac{\partial f_{1}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(y) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{0}}(y) & \frac{\partial f_{n}}{\partial x_{1}}(y) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(y)
\end{array}\right]
$$

Newton's method for systems

- This is a linear system!

$$
g(x)=b+A\left(x-x^{k}\right)
$$

- Note also that $b=f\left(x^{k}\right)$ so we have, more precisely:

$$
g(x)=f\left(x^{k}\right)+J_{f}\left(x^{k}\right)\left(x-x^{k}\right)
$$

- We solve $g(x)=\mathbf{0}$ in two steps:

1. Solve the linear system $J_{f}\left(x^{k}\right) \boldsymbol{y}=-f\left(x^{k}\right)$
2. Compute $x=x^{k}+y$

Newton's method for systems

- We could also directly solve

$$
f\left(x^{k}\right)+J_{f}\left(x^{k}\right)\left(x-x^{k}\right)=0
$$

by writing

$$
x=x^{k}-J_{f}\left(x^{k}\right)^{-1} f\left(x^{k}\right)
$$

- This formulation is a bit misleading, though - we don't want to actually compute $J_{f}\left(x^{k}\right)^{-1}$, just solve the linear system! Hence the two-step formulation from last slide.

Newton's method for systems

- Solving $g(x)=\mathbf{0}$ does not give us the exact solution since g only approximates f, but we get a method from it:

$$
x^{k+1}=x^{k}-J_{f}\left(x^{k}\right)^{-1} f\left(x^{k}\right)
$$

- Note the similarities with 1D-Newton:

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}
$$

- As with 1D-Newton, we require stopping conditions

Stopping conditions

- 1D Newton's method: Stop when

$$
\left|x^{k+1}-x^{k}\right|<\delta, \text { or }\left|f\left(x^{k+1}\right)\right|<\epsilon .
$$

...or a combination of the two

- Here: stop on reaching one or more of the following:
- $\left|x_{j}^{k+1}-x_{j}^{k}\right|<\delta$ for all j
$-\sqrt{\left(x_{0}^{k+1}-x_{0}^{k}\right)^{2}+\left(x_{1}^{k+1}-x_{1}^{k}\right)^{2}+\cdots+\left(x_{n}^{k+1}-x_{n}^{k}\right)^{2}}<\delta$
- $\left|f_{j}\left(x^{k+1}\right)\right|<\epsilon$ for all j
$-\sqrt{f_{0}\left(x^{k+1}\right)^{2}+f_{1}\left(x^{k+1}\right)^{2}+\ldots+f_{n}\left(x^{k+1}\right)^{2}}<\epsilon$
- We can pick and choose stopping conditions based on what seems reasonable for the problem.

Programming Newton's for systems

1. Write code for evaluating $J_{f}\left(x^{k}\right)$ and $f\left(x^{k}\right)$
2. Choose an initial guess x^{0}
3. Iterate until stopping condition is met:
4. Solve the linear system $J_{f}\left(\boldsymbol{x}^{k}\right) \boldsymbol{y}=-\boldsymbol{f}\left(\boldsymbol{x}^{k}\right)$
5. Compute $x^{k+1}=x^{k}+y$

Demonstration: newtonSkeleton.py

Summary

- We can generalize Newton's method to higherdimensional equations
- Relies on a linearization of the problem
- Uses the Jacobian of the function we want to find a root of
- Newton's method for systems requires vectors and matrices, and each step requires solution of a linear system
- Implementation is best done using several subfunctions

Questions?

