
TDT4127 Programming and Numerics
Week 41
Gaussian elimination
Plotting with Python

2

Learning goals

• Goals

– Solving linear systems

– Algorithm:

• Gaussian elimination
– Plotting functions

• Requires matplotlib library

• Curriculum

– Exercise sets 7 (and 10)

– Programming for Computations - Python

• Ch. 1.4, 1.5.7

3

Exercise set 7

• Two numerics exercises
– One on plotting (relevant parts covered in this lecture)
– One on Newton’s method for systems of equations

• This is not covered before next week
• Leaves 1½ weeks after the lecture to finish the exercise

– You can still do the Newton’s exercise before next week’s
lecture, there is a note explaining it in the exercise

• If you prefer having the lecture first, do the rest of the exercise set
and save the Newton’s exercise

4

Gaussian elimination, recap

To solve !" = $, first write it in augmented form.
Start with pivot row 0 and pivot column 0, then:

1. Swap the entries of the pivot row with the row below
with largest absolute value in the pivot column
1. If impossible, move pivot column to the right

2. Reduce the rows below the pivot row by adding
multiples of the pivot row to zero out the pivot column

3. Move the pivot row down and pivot column to the right.
If on the last row or the augmented column, stop. Else,
repeat from 1.

5

Partial pivoting

• In step no. 1, we swap the entries of the pivot row with
the row below with largest entry in the pivot column.

• Swapping like this is called partial pivoting.

• Why is this necessary?
– It’s not what is taught in non-numerical linear algebra courses!

• Answer: Partial pivoting reduces numerical errors due to
round-off (floating point precision).

6

Partial pivoting – example of error

• Consider the system
10#$ ∗ 1 1 | 1

1 1 | 2
and assume we have 4 digits of precision.

• No pivoting: Subtract 10$ times the first row from the
second to get

10#$ ∗ 1 1 | 1
0 −10) ∗ 9.9999 | − 10) ∗ 9.9998

7

Partial pivoting – example of error

• No pivoting: Subtract 10# times the first row from the second
to get

10$# ∗ 1 1 | 1
0 −10(∗ 9.9999 | − 10(∗ 9.9998

• With 4 digits of precision, this rounds to
10$# ∗ 1 1 | 1

0 −10# ∗ 1.000 | − 10# ∗ 1.000
• This can be easily solved: ,- = 1, ,0 = 0. This is wrong!

– The correct solution is ,- = 99998/99999, ,0 = 100000/99999!
– Sensitivity to roundoff errors is an example of numerical instability

• Small calculation errors cause big changes in the solution
– Double-precision floats (Python) have ~16 digit precision, but

numerical instability can still be an issue

8

Partial pivoting

• What happens if we do partial pivoting? After swapping:
1 1 | 2

10%& ∗ 1 1 | 1
• Subtract 10%& times the first row from the second to get

1 1 | 2
0 1.000 | 1.000

with 4 digits of precision
• This solves to)* = 1,)- = 1, a more precise solution.
• Adding large multiples of rows causes numerical errors by

«drowning out» the information in the other rows
– Due to roundoff errors

• Adding smaller multiples of rows is safer since it leaves less
chance of information loss
– Partial pivoting means all row multiplications are ≤ 1.

9

Complete pivoting

• One can also do complete pivoting, looking through both
rows and columns for the maximal element

• Requires a swap for the column of the maximal element
– And the row of the maximal element

• Only necessary in the worst cases
• Takes more time. For a matrix with !×! entries, we need

to look at ~!$ entries to find the max, compared to !
entries with partial pivoting.
– This is not really an issue for small (1000 x 1000) matrices, but

becomes a real problem with larger matrices.

10

When does Gaussian elimination work?

• As long as the problem has a solution!
– …and as long as partial/complete pivoting is enough to avoid

accuracy problems (which is almost always!)
– There is no need for analysis of convergence or error estimates

• When you run it all the way, you get the exact solution
• If you stop without letting the algorithm finish, you get nothing

• If the problem does not have a solution? Examples:
1 0 | 1
0 0 | 0 or 0 1 | 1

0 0 | 1
– One can add checks in the code to look for these

under/overdetermined situations and act accordingly.

11

Alternatives to Gaussian elimination

• The below is not curriculum
• Gaussian elimination is slow for large systems

– For an !×! system, each row reduction requires ~!# operations.
With ! rows, this is ~!$ operations, i.e. !# operations per
unknown in %. As ! grows, this quickly becomes too much.

• Some large systems have special structures
– Triangular, banded ,Toeplitz, sparse
– These structures can be exploited to make GE faster

• Otherwise, one should use faster, inexact methods that
do not give the exact solution (similar to Newton’s)
– Krylov subspace methods are used a lot in practice
– These are often what you get when using packages or MATLAB

12

Plotting in Python

• Use the matplotlib library https://matplotlib.org/gallery.html
• Why use matplotlib?

– Same reason as we use Python: free to use, lots of possibilities
– Plenty of examples available online

• Why not MATLAB?
– Matplotlib mimics MATLAB’s plotting, but MATLAB costs money
– MATLAB may have more tools, especially in 3D

• Why not use Excel?
– Excel: Easy to make one-off figures, not lots of figures
– Data handling is then often easier (and more general) in Python
– If we want a certain style of plot, matplotlib lets us use others’

setups very easily by just cloning their code
• Instead of spending time trying to reproduce the exact Excel settings

https://matplotlib.org/gallery.html

13

The matplotlib library

• Installing the matplotlib library
• Some Mac users may have it installed already
• https://matplotlib.org/users/installing.html
• An installation guide is in the works

https://matplotlib.org/users/installing.html

14

How does it work?

• For those familiar with GeoGebra: In GeoGebra, we just
input the function and it magically draws it.
– Matplotlib gives us a more fine-grained tool

• Include matplotlib using the command
include matplotlib.pyplot as plt

• Given lists x and y of equal length, we plot the points
(x[i],y[i]) with the command plt.plot(x,y)
– Same as when drawing a graph from hand if you have no idea

how it looks: put dots on the coordinates and draw lines between
• To see the figure, use plt.show()

15

Example

#Import plotting library
import matplotlib.pyplot as plt
#Inform about data points to plot
plt.plot([1,2,3,4], [1,4,9,16])
#Inform about label on the y axis
plt.ylabel('some numbers’)
#Axis range: [x_min, x_max, y_min, y_max]
plt.axis([0,4,0,16])
#Show the plot in a pop-up window
plt.show()

16

Plotting styles

• The default behaviour of plt.plot() is to connect the
points with lines

• We can change this using additional arguments after the
x/y coordinates
– For example, to plot y over the x points as red circles:

plt.plot(x,y,’ro’)
– To plot y over the x points as green triangles:

plt.plot(x,y,’g^’)
– More options can be found here:

https://matplotlib.org/users/pyplot_tutorial.html

https://matplotlib.org/users/pyplot_tutorial.html

17

Plotting several graphs in one figure

• If we want to generate several graphs, plot all of them
first using plt.plot(), then use plt.show()

#Import plotting library
import matplotlib.pyplot as plt
x = …
y1 = f(x)
Y2 = g(x)
plt.plot(x,y1)
plt.plot(x,y2)
plt.show()

18

Summary

• We use partial pivoting in Gaussian elimination to avoid
issues with floating point precision

• Except potential precision issues, Gaussian elimination
is a safe and stable method for solving linear problems
– But not necessarily the fastest – inexact methods can be good
enough and much faster. Not curriculum, though.

• Plotting in Python can be done using the matplotlib
library
– We will not be very fancy with it, but it exists and is versatile

19

Questions?

