TDT4127 Programming and Numerics

 Week 40
Important note

- Next week: Reference group meeting
- Information on Blackboard about who is in the reference group
- Contact them and give them feedback
- They will in turn inform Guttorm and me in the meeting
- We appreciate both positive and negative feedback!

Learning goals

- Goals
- Solving linear systems
- Algorithm:
- Gaussian elimination
- Curriculum
- Exercise 6 \& 7

Remembering vectors

- A vector is an n-dimensional variable

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- It is a nice and compact way of writing n variables
- It makes it easier for us to consider functions of more than one variable

$$
f(x) \text { vs } f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Lists and vectors

- Next week in programming: Lists
- Lists are Python's way of representing vectors

$$
\mathrm{x}=[1,2,3] \text { is equivalent to } x=[1,2,3]^{T}
$$

- To access elements in a list, use the delimiter []

```
print(x[0]) outputs 1
print(x[2]) outputs 3
```

- Elements are numbered from 0: called zero-based numbering
- Therefore, we write $x_{0}, x_{1}, \ldots, x_{n-1}$ for mathematics in this lecture.
- Lists, unlike mathematical vectors, can contain other stuff too
- Text strings, numbers, bools, etc.
- More about this next week

Lists and vectors

- Lists allow us to handle large amounts of data easily
- If we have three values, it is cleaner to write

$$
x=[1,2,3]
$$

instead of
$\mathrm{x} 0=1$
$\mathrm{x} 1=2$
$\mathrm{x} 2=3$

- Even more noticeable if we have a thousand variables
- When making functions, we only need to pass one variable def $f(x):$
instead of
def $f(x 1, x 2, x 3):$

Remembering matrices

- Linear transformations are special vector-valued functions

$$
y=f(x)
$$

- The linear structure of f means it is of the form

$$
\begin{aligned}
& y_{0}=a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2} \\
& y_{1}=a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2} \\
& y_{2}=a_{20} x_{0}+a_{21} x_{1}+a_{22} x_{2}
\end{aligned}
$$

- Note: All the information about what f does lies in the coefficients $a_{i j}$
- This means we can represent f using a matrix

$$
A=\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{21} \\
a_{20} & a_{21} & a_{22}
\end{array}\right], \quad y=A \boldsymbol{x}
$$

Solving linear systems

- The linear equation $f(x)=b$ can be solved for x exactly!
- Unlike the equations we used Newton on, where we got better and better results but never the mathematically exact solution.
- Example:

$$
\begin{gathered}
4 x_{0}+x_{1}=5 \\
x_{0}+x_{1}=2
\end{gathered}
$$

Subtract the second equation from the first to find

$$
3 x_{0}=3
$$

Can easily solve and find

$$
x_{0}=1, x_{1}=1
$$

- The general principle: add/subtract/swap equations to isolate one unknown, then back substitute.

Gaussian elimination

- Use row operations (swap rows/ add multiples of rows), go from

$$
\left[\begin{array}{lll:l}
a_{00} & a_{01} & a_{02} & b_{0} \\
a_{10} & a_{11} & a_{12} & b_{1} \\
a_{20} & a_{21} & a_{22} & b_{2}
\end{array}\right]
$$

to

$$
\left[\begin{array}{ccc:c}
\tilde{a}_{00} & \tilde{a}_{01} & \tilde{a}_{02} & \tilde{b}_{0} \\
0 & \tilde{a}_{11} & \tilde{a}_{12} & \tilde{b}_{1} \\
0 & 0 & \tilde{a}_{22} & \tilde{b}_{2}
\end{array}\right]
$$

- A system where we can back substitute easily!

Gaussian elimination

- Start on first row, first column. The pivot element belongs to both the pivot row and the pivot column.

1) If the current pivot element is 0 , swap the pivot row for one below with a nonzero element

Gaussian elimination

- Start on first row, first column. The pivot element belongs to both the pivot row and the pivot column.

1) If the current pivot element is 0 , swap the pivot row for one below with a nonzero element

Gaussian elimination

1a) If all elements below the pivot element are 0 , shift the pivot column to the right

Gaussian elimination

2) Add multiples of the pivot row to the rows below such that they are zeroed out in the pivot column

Gaussian elimination

3) Move the pivot row down and the pivot column to the right. If on the last row or the augmented column, stop.

Gaussian elimination

2) Add multiples of the pivot row to the rows below such that they are zeroed out in the pivot column

Gaussian elimination

3) Move the pivot row down and the pivot column to the right. If on the last row or the augmented column, stop.

Back substitution

With the augmented matrix in triangular/echelon form:

$$
\left[\begin{array}{cccc}
4 & 5 & 6 & \mid 7 \\
0 & 1 & 2 & \mid 3 \\
0 & 0 & -9 & \mid-9
\end{array}\right],
$$

we can interpret this as a linear system

$$
\begin{array}{lr}
4 x_{0}+5 x_{1}+6 x_{2}= & 7 \\
0 x_{0}+1 x_{1}+2 x_{2}= & 3 \\
0 x_{0}+0 x_{1}-9 x_{2}= & -9
\end{array}
$$

and backsubstitute

$$
\begin{gathered}
\mathrm{x}_{2}=1 \\
x_{1}=3-2 x_{2}=1 \\
x_{0}=\frac{7-5 x_{2}-6 x_{1}}{4}=-1
\end{gathered}
$$

A few remarks

- A detailed explanation of Gaussian elimination is found in exercise set 6.
- If the pivot element is 0 , which row do we swap with?
- Swap with the row with the largest entry in the pivot column
- Used in exercise set 6, explained next week
- In fact, swap rows even if the pivot element is nonzero!
- This is to avoid numerical instability (next week).
- What about over/underdetermined systems?
- We could throw an exception, programming week 43
- For now, don't bother with this; most important to get used to programming with matrices!

Programming with matrices

- A matrix in Python is a list of lists (vector of vectors)

$$
A=[[0,1,2,3],[4,5,6,7],[8,9,1,0]]
$$

gives the matrix from the examples above

- A[i][j] in Python corresponds to $a_{i j}$ in mathematics
- Writing A[i][j] = 2 assigns the value $a_{i j}=2$
- A[i] gives you the list that makes up the i'th row of A

$$
A[1]=[4,5,6,7]
$$

- No command for getting the columns of A

Programming with matrices

- Some useful tips for exercise set 6:
- len(A) gives you the number of rows in A
- len(A[1]) gives you the number of columns in A
- To loop over the rows in a matrix (fixed column j):
$j=1$
for i in range(0 ,len(A))

$$
A[i][j]=\ldots
$$

Programming with lists

- Functions with lists as input can make changes in-place
- Change the values of input variables outside the function

```
def multList(x,y):
        for i in range(0,len(x)):
        x[i] = x[i]*y[i]
        return
x = [1, 2, 3]
y = [4, 5, 6]
multList(x,y)
print(x)
Prints: [4, 10, 18]
```


Summary

- Gaussian elimination can be used to solve linear systems
- Together with back substitution
- Requires programming with lists and matrices
- Treated as one variable, can look up/change values
- Some programming tricks involving in-place functions and len
- Next week:
- Partial pivoting (changing the pivot row for the largest) - why?
- Plotting in Python

Questions?

