
TDT4127 Programming and Numerics
Week 40
Gaussian elimination
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Important note

• Next week: Reference group meeting

– Information on Blackboard about who is in the reference group
– Contact them and give them feedback

• They will in turn inform Guttorm and me in the meeting

• We appreciate both positive and negative feedback!
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Learning goals

• Goals
– Solving linear systems
– Algorithm:

• Gaussian elimination

• Curriculum
– Exercise 6 & 7
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Remembering vectors

• A vector is an !-dimensional variable

" =
$%
$&
⋮$(

• It is a nice and compact way of writing ! variables
• It makes it easier for us to consider functions of more 

than one variable
) " vs ) $%, $&, … , $(
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Lists and vectors

• Next week in programming: Lists
– Lists are Python’s way of representing vectors

x = [1,2,3] is equivalent to ! = 1, 2, 3 '

– To access elements in a list, use the delimiter []
print(x[0]) outputs 1
print(x[2]) outputs 3

– Elements are numbered from 0: called zero-based numbering
• Therefore, we write (), (*, … , (,-* for mathematics in this lecture.

– Lists, unlike mathematical vectors, can contain other stuff too
• Text strings, numbers, bools, etc.
• More about this next week
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Lists and vectors

• Lists allow us to handle large amounts of data easily
– If we have three values, it is cleaner to write

x = [1,2,3]
instead of
x0 = 1
x1 = 2
x2 = 3

– Even more noticeable if we have a thousand variables
– When making functions, we only need to pass one variable

def f(x):
instead of
def f(x1,x2,x3):
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Remembering matrices

• Linear transformations are special vector-valued functions

! = # $

• The linear structure of # means it is of the form

%& = '&&(& + '&*(* + '&+x+
%* = '*&(& + '**(* + '*+(+
%+ = '+&(& + '+*(* + '++(+

– Note: All the information about what # does lies in the coefficients '-.
– This means we can represent # using a matrix

/ =
'&& '&* '&+'*&
'+&

'**
'+*

'+*
'++

, ! = /$
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Solving linear systems

• The linear equation ! " = $ can be solved for " exactly!
– Unlike the equations we used Newton on, where we got better

and better results but never the mathematically exact solution.
• Example: 

4&' + &) = 5
&' + &) = 2

Subtract the second equation from the first to find
3&' = 3

Can easily solve and find
&' = 1, &) = 1

• The general principle: add/subtract/swap equations to 
isolate one unknown, then back substitute.



9

Gaussian elimination

• Use row operations (swap rows/ add multiples of rows), 
go from

!"" !"# !"$ | &"
!#" !## !#$ | &#
!$" !$# !$$ | &$

to
'!"" '!"# '!"$ | (&"
0 '!## '!#$ | (&#
0 0 '!$$ | (&$

• A system where we can back substitute easily!
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Gaussian elimination

• Start on first row, first column. The pivot element belongs
to both the pivot row and the pivot column. 

0 1 2 | 3
4 5 6 | 7
8 9 1 | 2

1) If the current pivot element is 0, swap the pivot row for 
one below with a nonzero element
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Gaussian elimination

• Start on first row, first column. The pivot element belongs
to both the pivot row and the pivot column. 

4 5 6 | 7
0 1 2 | 3
8 9 1 | 2

1) If the current pivot element is 0, swap the pivot row for 
one below with a nonzero element
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Gaussian elimination

0 1 2 | 3
0 5 6 | 7
0 9 1 | 2

1a) If all elements below the pivot element are 0, shift the
pivot column to the right
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Gaussian elimination

4 5 6 | 7
0 1 2 | 3
0 −1 −11 |−12

2) Add multiples of the pivot row to the rows below such
that they are zeroed out in the pivot column
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Gaussian elimination

4 5 6 | 7
0 1 2 | 3
0 −1 −11 |−12

3) Move the pivot row down and the pivot column to the
right. If on the last row or the augmented column, stop.
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Gaussian elimination

4 5 6 | 7
0 1 2 | 3
0 0 −9 |−9

2) Add multiples of the pivot row to the rows below such
that they are zeroed out in the pivot column
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Gaussian elimination

4 5 6 | 7
0 1 2 | 3
0 0 −9 |−9

3) Move the pivot row down and the pivot column to the
right. If on the last row or the augmented column, stop.
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Back substitution

With the augmented matrix in triangular/echelon form:
4 5 6 | 7
0 1 2 | 3
0 0 −9 |−9

,

we can interpret this as a linear system
4,- + 5,/ + 6x1 = 7
0,- + 1,/ + 2,1 = 3
0,- + 0,/ − 9,1 = −9

and backsubstitute
x1 = 1

,/ = 3 − 2,1 = 1
,- =

7 − 5,1 − 6,/
4 = −1
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A few remarks

• A detailed explanation of Gaussian elimination is found
in exercise set 6.

• If the pivot element is 0, which row do we swap with?
– Swap with the row with the largest entry in the pivot column
– Used in exercise set 6, explained next week

• In fact, swap rows even if the pivot element is nonzero!
– This is to avoid numerical instability (next week). 

• What about over/underdetermined systems?
– We could throw an exception, programming week 43
– For now, don’t bother with this; most important to get used to 

programming with matrices!
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Programming with matrices

• A matrix in Python is a list of lists (vector of vectors)

A = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 1, 0]] 

gives the matrix from the examples above
• A[i][j] in Python corresponds to !"# in mathematics

– Writing A[i][j] = 2 assigns the value !"# = 2
• A[i] gives you the list that makes up the i’th row of A

A[1] = [4, 5, 6, 7]

• No command for getting the columns of A
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Programming with matrices

• Some useful tips for exercise set 6:
– len(A) gives you the number of rows in A
– len(A[1]) gives you the number of columns in A

• To loop over the rows in a matrix (fixed column j):

j = 1
for i in range(0,len(A))

A[i][j] = …
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Programming with lists

• Functions with lists as input can make changes in-place
– Change the values of input variables outside the function

def multList(x,y):
for i in range(0,len(x)):

x[i] = x[i]*y[i]
return

x = [1, 2, 3]
y = [4, 5, 6]
multList(x,y)
print(x) 

Prints: [4, 10, 18]
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Summary

• Gaussian elimination can be used to solve linear 
systems
– Together with back substitution

• Requires programming with lists and matrices
– Treated as one variable, can look up/change values
– Some programming tricks involving in-place functions and len

• Next week:
– Partial pivoting (changing the pivot row for the largest) – why?
– Plotting in Python
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Questions?


