
TDT4127 Programming and Numerics
Week 37
Numerical integration
Algorithms: midpoint, trapezoidal and Simpson’s rules
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Learning goals

• Goals
– Numerical integration

• Algorithm statements
– Midpoint rule, Trapezoidal rule, Simpson’s rule

• Error analysis
• Implementation tips

• Curriculum
– Exercise 3
– Auditorium exercise 1
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Numerical integration

• Everyone loves to integrate! But it can be hard.

• Integrating in 1D = Finding area under the graph

• The idea: Approximate f(x) by something easier to integrate
– In particular, polynomials are really easy and approximate well!
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Midpoint rule

• Approximate the function by a constant and integrate
– Best constant is the value at the midpoint, f((a+b)/2).
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Trapezoidal rule

• Approximate the function f by a linear function g
– Choose g to interpolate f at the endpoints; g(a) = f(a), g(b) = f(b)

g(x) = f(a)(x-b)/(a-b) + f(b)(x-a)/(b-a)
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Simpson’s rule

• Approximate the function f by a quadratic function g
– Interpolate at c = (a+b)/2; g(a) = f(a), g(b) = f(b), g(c) = f(c)

f(x) ⇡ g(x) = f(a)
(x� b)(x� c)

(a� b)(a� c)
+ f(b)

(x� a)(x� c)

(b� a)(b� c)
+ f(c)

(x� a)(x� b)

(c� b)(c� b)
.
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Composite rules

• All three rules give alright estimates
– But we can see with the naked eye that they make mistakes!

• To improve, we split the interval [a,b] into smaller ones

– This is called a composite method
• We often drop «composite» from the name

– Typically, we call the number of intervals N
– We will consider intervals of fixed width h

• Non-fixed widths; is something we’ll get back to in November
– Splitting an interval of width (b-a) into N parts gives a width of
h=(b-a)/N.
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Composite midpoint rule

• Use a constant approximation on each subinterval
– Subintervals: [xk, xk+1], k = 0,…,N-1.     xk = a + kh.      h=(b-a)/N.
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Composite midpoint rule

• Use a constant approximation on each subinterval
– Subintervals: [xk, xk+1], k = 0,…,N-1.     xk = a + kh.      h=(b-a)/N.
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Composite midpoint rule

• Use a constant approximation on each subinterval
– Subintervals: [xk, xk+1], k = 0,…,N-1.     xk = a + kh.      h=(b-a)/N.
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Composite trapezoidal rule

• Use a linear approximation on each subinterval
– Subintervals: [xk, xk+1], k = 0,…,N-1.     xk = a + kh.      h=(b-a)/N.
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Composite trapezoidal rule

• Use a linear approximation on each subinterval
– Subintervals: [xk, xk+1], k = 0,…,N-1.     xk = a + kh.      h=(b-a)/N.
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Composite trapezoidal rule

• Use a linear approximation on each subinterval
– Subintervals: [xk, xk+1], k = 0,…,N-1.     xk = a + kh.      h=(b-a)/N.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x0) f(x1) f(x2) f(x3) f(x4) f(x5) f(x6) f(x7)

f(x8)

Z b

a
f(x)dx ⇡ h

2

 
f(x0) + 2

N�1X

k=1

f(xk) + f(xN )

!
N = 8, h = 0.125



14

Composite Simpson’s rule

• Use a quadratic approximation on each subinterval
– Subintervals: [x2k, x2k+2], k = 0,…,N-1.    xk = a + kh.    h=(b-a)/2N.

– Note the odd/even coefficients of 4 and 2
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Composite Simpson’s rule

• Use a quadratic approximation on each subinterval
– Subintervals: [x2k, x2k+2], k = 0,…,N-1.    xk = a + kh.    h=(b-a)/2N.

– Note the odd/even coefficients of 4 and 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x1) f(x3) f(x5) f(x7) f(x9)

bZ

a

f(x)dx ⇡ h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ...+ 2f(x2N�2) + 4f(x2N�1) + f(x2N )) , h =

b� a

2N

N = 5, h = 0.2



16

Composite Simpson’s rule

• Use a quadratic approximation on each subinterval
– Subintervals: [x2k, x2k+2], k = 0,…,N-1.    xk = a + kh.    h=(b-a)/2N.

– Note the odd/even coefficients of 4 and 2
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Implementation

• Sums and for loops go hand in hand
• Example:

Translation into code:
S = 0
for k in range(0,N+1)

a_k = …
S = S + a_k

S =
NX

k=0

ak
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Error analysis

• We can get an estimate for the error of the midpoint
method assuming f is continuously differentiable (also
written C1)
– A function f is continuously diff’ble if f’ is continuous.
– Examples: f(x) = x2 and f(x) = ex

– Non-example: f(x) = |x|

• The midpoint rule has an error estimate:

• Where M is the maximum value of |f’’(x)| on [a,b].
– Note that this estimate requires continuous differentiability of f

EMP =

�����

Z b
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f(x)dx� (b� a)f
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◆����� 
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Error analysis

• For the composite midpoint method, we simply use the
error estimate on each subinterval [xk, xk+1]

• Summing up all of these, we find the total error

• As N increases, the error decreases and so the
approximation converges to the true integral as N → ∞

EMP,k =

����
Z xk+1

xk

f(x)dx� hf (ck)

���� 
h3

24
M

ECMP 
N�1X

k=0

EMP,k 
N�1X

k=0

h3

24
M = N

h3

24
M =

(b� a)3

24N2
M
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Error analysis

• Similar estimates can be made for (composite) 
trapezoidal (TR) and (composite) Simpson’s (SI) rules

• Note that composite Simpson goes as 1/N4

– And requires a continuous 4th derivative of f, (Notation: f is C4 ).

ETR =

�����

Z b

a
f(x)dx� b� a

2
(f(a) + f(b))

����� 
(b� a)3
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ECTR  (b� a)3

12N2
M

ESI =

�����

Z b

a
f(x)dx� b� a
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✓
f(a) + 4f

✓
a+ b
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◆
+ f(b)

◆����� 
(b� a)5
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ECSI 
(b� a)5

2880N4
M4, M4 = | max

axb
f 0000(x)|
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Guaranteed error estimates

• The error analysis is useful since it gives us the worst-
case behaviour of the algorithm

• If we want, we can guarantee a level of precision in the
numerical approximation
– For example, to make sure the integral of a C4 function has error

at most ε, use the Simpson’s rule and choose N such that

– Note: the estimates may be too conservative, suggesting more 
iterations than necessary, but they are safe

ECSI 
(b� a)5

2880N4
M4 = ✏, M4 = | max

axb
f 0000(x)|
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Summary

• Numerical integration is used to evaluate integrals 
• We have seen three methods

– Midpoint rule, trapezoidal rule and Simpson’s rule
• Also seen the composite rules based on these

– With error analysis, useful for guaranteeing errors!
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Questions?


