TDT4127 Programming and Numerics Week 37

Numerical integration

Algorithms: midpoint, trapezoidal and Simpson's rules

Learning goals

- Goals
 - Numerical integration
 - Algorithm statements
 - Midpoint rule, Trapezoidal rule, Simpson's rule
 - Error analysis
 - Implementation tips
- Curriculum
 - Exercise 3
 - Auditorium exercise 1

Numerical integration

Everyone loves to integrate! But it can be hard.

$$\int_0^1 \tan(\cos(\sin(e^{x^5}))) dx = ?$$

Integrating in 1D = Finding area under the graph

- The idea: Approximate f(x) by something easier to integrate
 - In particular, polynomials are really easy and approximate well!

Midpoint rule

- Approximate the function by a constant and integrate
 - Best constant is the value at the midpoint, f((a+b)/2).

$$\int_{a}^{b} f(x) dx \approx f\left(\frac{a+b}{2}\right) (b-a)$$

Trapezoidal rule

- Approximate the function f by a linear function g
 - Choose g to interpolate f at the endpoints; g(a) = f(a), g(b) = f(b)

$$g(x) = f(a)(x-b)/(a-b) + f(b)(x-a)/(b-a)$$

$$\int_{a}^{b} f(x)dx \approx (f(a) + f(b)) \frac{b - a}{2}$$

Simpson's rule

- Approximate the function f by a quadratic function g
 - Interpolate at c = (a+b)/2; g(a) = f(a), g(b) = f(b), g(c) = f(c)

$$f(x) \approx g(x) = f(a)\frac{(x-b)(x-c)}{(a-b)(a-c)} + f(b)\frac{(x-a)(x-c)}{(b-a)(b-c)} + f(c)\frac{(x-a)(x-b)}{(c-b)(c-b)}.$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left(f(a) + 4f(c) + f(b) \right).$$

Composite rules

- All three rules give alright estimates
 - But we can see with the naked eye that they make mistakes!
- To improve, we split the interval [a,b] into smaller ones

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \approx \int_{a}^{c} g(x)dx + \int_{c}^{b} g(x)dx$$

- This is called a composite method
 - We often drop «composite» from the name
- Typically, we call the number of intervals N
- We will consider intervals of fixed width h
 - Non-fixed widths; is something we'll get back to in November
- Splitting an interval of width (b-a) into N parts gives a width of h=(b-a)/N.

Composite midpoint rule

Use a constant approximation on each subinterval

- Subintervals: $[x_k, x_{k+1}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/N.

$$\int_{a}^{b} f(x) dx \approx h \sum_{k=0}^{N-1} f(c_k), \qquad c_k = \frac{x_{k+1} + x_k}{2}$$

Composite midpoint rule

Use a constant approximation on each subinterval

- Subintervals: $[x_k, x_{k+1}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/N.

$$\int_{a}^{b} f(x) dx \approx h \sum_{k=0}^{N-1} f(c_k), \qquad c_k = \frac{x_{k+1} + x_k}{2}$$

Composite midpoint rule

- Use a constant approximation on each subinterval
 - Subintervals: $[x_k, x_{k+1}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/N.

$$\int_{a}^{b} f(x) dx \approx h \sum_{k=0}^{N-1} f(c_k), \qquad c_k = \frac{x_{k+1} + x_k}{2}$$

Composite trapezoidal rule

- Use a linear approximation on each subinterval
 - Subintervals: $[x_k, x_{k+1}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/N.

$$N = 2$$
, $h = 0.5$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \sum_{k=1}^{N-1} f(x_k) + f(x_N) \right)$$

Composite trapezoidal rule

- Use a linear approximation on each subinterval
 - Subintervals: $[x_k, x_{k+1}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/N.

$$N = 5, h = 0.2$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \sum_{k=1}^{N-1} f(x_k) + f(x_N) \right)$$

Composite trapezoidal rule

Use a linear approximation on each subinterval

- Subintervals: $[x_k, x_{k+1}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/N.

$$N = 8$$
, $h = 0.125$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(x_0) + 2 \sum_{k=1}^{N-1} f(x_k) + f(x_N) \right)$$

Composite Simpson's rule

- Use a quadratic approximation on each subinterval
 - Subintervals: $[x_{2k}, x_{2k+2}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/2N.

$$N = 2, h = 0.5$$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N}) \right), \qquad h = \frac{b-a}{2N}$$

Note the odd/even coefficients of 4 and 2

Composite Simpson's rule

- Use a quadratic approximation on each subinterval
 - Subintervals: $[x_{2k}, x_{2k+2}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/2N.

$$N = 5$$
, $h = 0.2$

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N}) \right), \qquad h = \frac{b-a}{2N}$$

Note the odd/even coefficients of 4 and 2

Composite Simpson's rule

- Use a quadratic approximation on each subinterval
 - Subintervals: $[x_{2k}, x_{2k+2}], k = 0,...,N-1.$ $x_k = a + kh.$ h=(b-a)/2N.

$$N = 8$$
, $h = 0.125$

$$\int_{-\infty}^{b} f(x)dx \approx \frac{h}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{2N-2}) + 4f(x_{2N-1}) + f(x_{2N}) \right), \qquad h = \frac{b-a}{2N}$$

Note the odd/even coefficients of 4 and 2

Implementation

- Sums and for loops go hand in hand
- Example:

$$S = \sum_{k=0}^{N} a_k$$

<u>Translation into code:</u>

```
S = 0
for k in range(0,N+1)
    a_k = ...
    S = S + a_k
```

Error analysis

- We can get an estimate for the error of the midpoint method assuming f is continuously differentiable (also written C¹)
 - A function f is continuously diff'ble if f' is continuous.
 - Examples: $f(x) = x^2$ and $f(x) = e^x$
 - Non-example: f(x) = |x|
- The midpoint rule has an error estimate:

$$E_{\text{MP}} = \left| \int_{a}^{b} f(x) dx - (b - a) f\left(\frac{a + b}{2}\right) \right| \le \frac{(b - a)^{3}}{24} M$$

- Where M is the maximum value of |f''(x)| on [a,b].
 - Note that this estimate requires continuous differentiability of f

Error analysis

• For the composite midpoint method, we simply use the error estimate on each subinterval $[x_k, x_{k+1}]$

$$E_{\mathrm{MP},k} = \left| \int_{x_k}^{x_{k+1}} f(x) \mathrm{d}x - hf(c_k) \right| \le \frac{h^3}{24} M$$

Summing up all of these, we find the total error

$$E_{\text{CMP}} \le \sum_{k=0}^{N-1} E_{\text{MP},k} \le \sum_{k=0}^{N-1} \frac{h^3}{24} M = N \frac{h^3}{24} M = \frac{(b-a)^3}{24N^2} M$$

 As N increases, the error decreases and so the approximation converges to the true integral as N → ∞

Error analysis

 Similar estimates can be made for (composite) trapezoidal (TR) and (composite) Simpson's (SI) rules

$$E_{\text{TR}} = \left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} (f(a) + f(b)) \right| \le \frac{(b-a)^{3}}{12} M$$

$$E_{\text{CTR}} \le \frac{(b-a)^{3}}{12N^{2}} M$$

$$E_{\text{SI}} = \left| \int_{a}^{b} f(x) dx - \frac{b-a}{6} \left(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right) \right| \le \frac{(b-a)^{5}}{2880} M_{4}$$

$$E_{\text{CSI}} \le \frac{(b-a)^{5}}{2880N^{4}} M_{4}, \qquad M_{4} = \left| \max_{a \le x \le b} f''''(x) \right|$$

- Note that composite Simpson goes as 1/N⁴
 - And requires a continuous 4th derivative of f, (Notation: f is C^4).

Guaranteed error estimates

- The error analysis is useful since it gives us the worstcase behaviour of the algorithm
- If we want, we can guarantee a level of precision in the numerical approximation
 - For example, to make sure the integral of a C^4 function has error at most ε, use the Simpson's rule and choose N such that

$$E_{\text{CSI}} \le \frac{(b-a)^5}{2880N^4} M_4 = \epsilon, \qquad M_4 = |\max_{a < x < b} f''''(x)|$$

 Note: the estimates may be too conservative, suggesting more iterations than necessary, but they are safe

Summary

- Numerical integration is used to evaluate integrals
- We have seen three methods
 - Midpoint rule, trapezoidal rule and Simpson's rule
- Also seen the composite rules based on these
 - With error analysis, useful for guaranteeing errors!

Questions?