TDT4127 Programming and Numerics Week 36

Numerical integration
Algorithms: midpoint, trapezoidal and Simpson's rules

[^0]
Learning goals

- Goals
- Numerical integration
- Algorithm statements
- Error analysis
- Implementation tips
- Curriculum
- Exercise 3
- Auditorium exercise 1

Numerical integration

- Everyone loves to integrate! But it can be hard.

$$
\int_{0}^{1} \tan \left(\cos \left(\sin \left(\mathrm{e}^{x^{5}}\right)\right)\right) \mathrm{d} x=?
$$

- Integrating in 1D = Finding area under the graph

- The idea: Approximate $f^{0,2}(x)$ by something easier to integrate
- In particular, polynomials are really easy and approximate well!

Midpoint rule

- Approximate the function by a constant and integrate
- Best constant is the value at the midpoint, $f((a+b) / 2)$.

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx f\left(\frac{a+b}{2}\right)(b-a)
$$

Trapezoidal rule

- Approximate the function f by a linear function g
- Choose g to interpolate f at the endpoints; $g(a)=f(a), g(b)=f(b)$

$$
g(x)=f(a)(x-b) /(a-b)+f(b)(x-a)(b-a)
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx(f(a)+f(b)) \frac{b-a}{2}
$$

Simpson's rule

- Approximate the function f by a quadratic function g
- Interpolate at $\mathrm{c}=(\mathrm{a}+\mathrm{b}) / 2 ; g(a)=f(a), g(b)=f(b), g(c)=f(c)$ $f(x) \approx g(x)=f(a) \frac{(x-b)(x-c)}{(a-b)(a-c)}+f(b) \frac{(x-a)(x-c)}{(b-a)(b-c)}+f(c) \frac{(x-a)(x-b)}{(c-b)(c-b)}$.

[^1]
Composite rules

- All three rules give alright estimates
- But we can see with the naked eye that they make mistakes!
- To improve, we split the interval $[a, b]$ into smaller ones
- Typically, we call the number of intervals N
- We will consider intervals of fixed width h
- Other choices exist (leading to Gaussian quadrature)
- This is not curriculum, but is widely used in practice
- Splitting an interval of width $(b-a)$ into N parts gives a width of $h=(b-a) / N$.

Composite midpoint rule

- Use a constant approximation on each subinterval
- Subintervals: $\left[x_{k}, x_{k+1}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / N$.

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx h \sum_{k=0}^{N-1} f\left(c_{k}\right), \quad c_{k}=\frac{x_{k+1}+x_{k}}{2}
$$

Composite midpoint rule

- Use a constant approximation on each subinterval
- Subintervals: $\left[x_{k}, x_{k+1}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / N$.

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx h \sum_{k=0}^{N-1} f\left(c_{k}\right), \quad c_{k}=\frac{x_{k+1}+x_{k}}{2}
$$

Composite midpoint rule

- Use a constant approximation on each subinterval
- Subintervals: $\left[x_{k}, x_{k+1}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / N$.

$$
N=8, h=0.125
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx h \sum_{k=0}^{N-1} f\left(c_{k}\right), \quad c_{k}=\frac{x_{k+1}+x_{k}}{2}
$$

Composite trapezoidal rule

- Use a linear approximation on each subinterval
- Subintervals: $\left[x_{k}, x_{k+1}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / N$.

$$
N=2, h=0.5
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{k=0}^{N-1} f\left(x_{1}\right)+f\left(x_{N}\right)\right)
$$

Composite trapezoidal rule

- Use a linear approximation on each subinterval
- Subintervals: $\left[x_{k}, x_{k+1}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / N$.

$$
N=5, h=0.2
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{k=0}^{N-1} f\left(x_{1}\right)+f\left(x_{N}\right)\right)
$$

Composite trapezoidal rule

- Use a linear approximation on each subinterval
- Subintervals: $\left[x_{k}, x_{k+1}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / N$.

$$
N=8, h=0.125
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{k=0}^{N-1} f\left(x_{1}\right)+f\left(x_{N}\right)\right)
$$

Composite Simpson's rule

- Use a quadratic approximation on each subinterval
- Subintervals: $\left[x_{2 k}, x_{2 k+2}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / 2 N$.

$$
N=2, h=0.5
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right), \quad h=\frac{b-a}{2 N}
$$

Composite Simpson's rule

- Use a quadratic approximation on each subinterval
- Subintervals: $\left[x_{2 k}, x_{2 k+2}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / 2 N$.

$$
N=5, h=0.2
$$

$\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right), \quad h=\frac{b-a}{2 N}$

Composite Simpson's rule

- Use a quadratic approximation on each subinterval
- Subintervals: $\left[x_{2 k}, x_{2 k+2}\right], k=0, \ldots, N-1 . \quad x_{k}=a+k h . \quad h=(b-a) / 2 N$.

$\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+2 f\left(x_{2 N-2}\right)+4 f\left(x_{2 N-1}\right)+f\left(x_{2 N}\right)\right), \quad h=\frac{b-a}{2 N}$
- Note the odd/even coefficients of 4 and 2

Error analysis

- We can get an estimate for the error of the midpoint method assuming f is continuously differentiable (also written C^{1})
- A function f is continuously diff'ble if f^{\prime} is continuous.
- Examples: $f(x)=x^{2}$ and $f(x)=e^{x}$
- Non-example: $f(x)=|x|$
- The midpoint rule has an error estimate:

$$
E_{\mathrm{MP}}=\left|\int_{a}^{b} f(x) \mathrm{d} x-(b-a) f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)^{3}}{24} M
$$

- Where M is the maximum value of $\left|f^{\prime \prime}(x)\right|$ on $[a, b]$.
- Note that this estimate requires continuous differentiability of f

Error analysis

- For the composite midpoint method, we simply use the error estimate on each subinterval $\left[x_{k}, x_{k+1}\right]$

$$
E_{\mathrm{MP}, k}=\left|\int_{x_{k}}^{x_{k+1}} f(x) \mathrm{d} x-h f\left(c_{k}\right)\right| \leq \frac{h^{3}}{24} M
$$

- Summing up all of these, we find the total error

$$
E_{\mathrm{CMP}} \leq \sum_{k=0}^{N-1} E_{\mathrm{MP}, k} \leq \sum_{k=0}^{N-1} \frac{h^{3}}{24} M=N \frac{h^{3}}{24} M=\frac{(b-a)^{3}}{24 N^{2}} M
$$

- As N increases, the error decreases and so the approximation converges to the true integral as $N \rightarrow \infty$

Error analysis

- Similar estimates can be made for (composite) trapezoidal (TR) and (composite) Simpson's (SI) rules

$$
\begin{gathered}
E_{\mathrm{TR}}=\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{2}(f(a)+f(b))\right| \leq \frac{(b-a)^{3}}{12} M \\
E_{\mathrm{CTR}} \leq \frac{(b-a)^{3}}{12 N^{2}} M \\
E_{\mathrm{SI}}=\left|\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)\right| \leq \frac{(b-a)^{5}}{2880} M_{4} \\
E_{\mathrm{CSI}} \leq \frac{(b-a)^{5}}{2880 N^{4}} M_{4}, \quad M_{4}=\left|\max _{a \leq x \leq b} f^{\prime \prime \prime \prime}(x)\right|
\end{gathered}
$$

- Note that composite Simpson goes as $1 / N^{4}$
- And requires a continuous 4th derivative of f, (Notation: f is C^{4}).

Guaranteed error estimates

- The error analysis is useful since it gives us the worstcase behaviour of the algorithm
- If we want, we can guarantee a level of precision in the numerical approximation
- For example, to make sure the integral of a C^{4} function has error at most ε, use the Simpson's rule and choose N such that

$$
E_{\mathrm{CSI}} \leq \frac{(b-a)^{5}}{2880 N^{4}} M_{4}=\epsilon, \quad M_{4}=\left|\max _{a \leq x \leq b} f^{\prime \prime \prime \prime}(x)\right|
$$

- Note: the estimates may be too conservative, suggesting more iterations than necessary, but they are safe

Implementation

- Sums and for loops go hand in hand
- Example:

$$
S=\sum_{k=0}^{N} a_{k}
$$

Translation into code:
$\mathrm{S}=0$
for k in range $(0, N+1)$
a_k = ...
S = S + a_k

Summary

- Numerical integration is used to evaluate integrals
- We have seen three methods
- Midpoint rule, trapezoidal rule and Simpson's rule
- Also seen the composite rules based on these
- With error analysis, useful for guaranteeing errors!

Questions?

[^0]: иәрләл | 0 |
 | :--- |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |

[^1]:

 $$
 \int^{b} f(x) \mathrm{d} x \approx \frac{b-a}{6}(f(a)+4 f(c)+f(b)) .
 $$

