
TDT4127 Programming and Numerics
Week 36
Floating point numbers
Basic concepts in numerical mathematics
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Learning goals

• Goals
– Floating point numbers
– Refresh mathematical concepts
– General knowledge of numerics

• Curriculum
– Exercise 1
– Exercise 2
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Floating point numbers

• Continued from last week’s lecture
• Decimal numbers can be both infinitely large and long

– For example, π is infinitely long
• π = 3.14159265359…

– We can still use it mathematically: 
• A = πr2

– When computing, we use a truncated value with an uncertainty:
• π = 3.14 (± 0.005)

– We do this for other infinitely long numbers as well:
• 1/3 = 0.3333 (± 0.0005)

• Our representation of decimal numbers must balance
magnitude and decimal point precision.
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Floating point numbers

– Floats are a tradeoff between size range and accuracy
– Based on scientific notation for numbers

• Avogadro’s number: 1023×6.022140857
• Electron rest mass: 10−31×9.109383561
• Large range of numbers, here using only 12 digits (base 10 numbers).
• Uncertainty lies in the last digit

– Floating point numbers use the same idea, but in base 2
• a = (-1)sg × 2e-b × s

– Sign: sg is 1 bit representing 0 or 1, allows negative/postive numbers
– Exponent: e is a positive integer, adjusts size
– Bias: b is a predetermined integer allowing for negative exponents
– Significand: s is a number between 1 and 2 of the form

s = 1.s1s2s3s4s5s6...
= 1 + s1×2-1 + s2×2-2 + s3×2-3 + s4×2-4 + s5×2-5 + s6×2-6 + …

– This is like scientific notation in base 2, with uncertainty in the last digit. 
– More in Exercise 1, after which we will mostly not have to worry about them.
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Operations with floating point numbers

• Addition/subtraction requires care due to roundoff error
– When adding, the smaller number loses significance
– Example in base 10: 12345.67 + 1.224567 with 7 digit precision:

12345.67
+     1.224567
=  12346.894567 ≈ 12346.89

– Same effect as adding 1.22 since the last four digits are lost.
– When adding many small numbers to a larger number, we lose 

precision unless it is done carefully. 
• Workarounds such as Kahan’s algorithm is an algorithm for doing

so. Not curriculum.
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Operations with floating point numbers

• Multiplication/division are safe
– We add/subtract exponents and multiply/divide the significands.

• Checking for equality is very unsafe
– If a and b are floats, a = b if all their bits are the same.
– Due to imprecision, numbers that should be equal after some

computation, may not be equal. 
– Example: Are d = (a + b) + c and e = a + (b + c) equal?

a = 123456.7, b = 123.4567, c = 0.4567891

d = 123580.2 + 0.4567891  = 123580.7
e = 123456.7 + 123.9135 = 123580.6

• This concludes the rest of last week’s lecture
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The goal of numerics

• To solve «unsolvable» equations

• Saves a lot of time and lets us do more with maths!
• Based on algorithms

– Recipes expressed mathematically
– Implementation done by programming

• Three main questions we will discuss for each topic:
– What do the algorithms look like?
– When do the algorithms work?
– How well do they work?

log(cos(x2)) =
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What do the algorithms look like?

• Example: Bisection method
– Simple algorithm (root finder) for finding zeroes of functions: f(x) = 0
– Root finders can also be used to solve equations:

f(x) = g(x) ó f(x) – g(x) = h(x) = 0
• Start with two points a and b such that f(a) < 0, f(b) > 0

• Then, there is a point z between a and b where f(z) = 0
• This point is also called a root of f

• Let c = (a+b)/2, check the value of f(c)
– If f(c) < 0, swap a for c and repeat
– If f(c) > 0, swap b for c and repeat
– If f(c) = 0, we have a solution!

• Start again with new a and b. 
– A single step like this is called an iteration.
– Repeated iterations makes a smaller and smaller interval around z.
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Iteration 1
f(a) > 0, f(b) < 0, f(c) < 0

-> Swap b for c



10

Iteration 2
f(a) > 0, f(b) < 0, f(c) > 0

-> Swap a for c
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Iteration 3
f(a) > 0, f(b) < 0, f(c) < 0

-> Swap b for c
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When do the algorithms work?

• Algorithms work based on requirements, and it is 
important to meet them
– Otherwise, absurd results can occur

• Example: Bisection method
– Correct initialization: Need to start with two point a and b such

that f(a) and f(b) have different signs.
• Otherwise, we don’t know if there is a zero in the interval

– Properties of the function f
• We require that f is continuous
• A continuous function does not make jumps
• Otherwise, our intuition that there is a point z between a and b

where f(z) = 0 does not hold!
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A discontinuous function: f(x) =

(
�1, x < 0.3

1, x � 0.3

• No zeroes, but the starting interval a = 0, b = 1 is still OK!  
• If we run the algorithm, it will try to find a non-existant root. Absurd!
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How well do the algorithms work?

• How fast is the convergence?
• Example: Bisection vs Newton’s method to find root of
f(x) = (x-0.3)(x-3)
– Newton’s method is taught in week 39

Iteration no. (a,b), Bisection x, Newton
0 (0,1) 1
1 (0,0.5) -0.0769230
2 (0.25,0.5) 0.25886586
3 (0.25,0.375) 0.29939185
4 (0.25,0.3125) 0.29999986
5 (0.28125,0.3125) 0.30000000

• Newton’s method is extremely fast! 5 iterations to get 8 digits of accuracy.
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The «user manual» for algorithms

• Several issues to keep in mind, all of which we will go
through for every algorithm:
– Convergence speed
– Accuracy of solution
– Error estimates
– Conditions for use
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Timeline
Week Numerikk Algorithms

34 Introduction

35 Programming, floating points

36 Refresh maths, floating points Bisection method

37 Numerical integration Trapezoidal rule, Simpson’s rule

38 Numerical equation solvers in 1D Newton’s method

39 Numerical equation solvers in 1D

40 Solving linear systems Gaussian elimination

41 Solving linear systems

42 Numerical equation solvers in nD Newton’s method for systems

43 Numerical solution of differential equations Euler’s method, Heun’s method, Runge-Kutta 

methods

44 Numerical solution of differential equations

45 Numerical integration with adaptive Simpson’s rule Adaptive Simpson’s rule

46 Repetition

47 Repetition
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Summary

• Floating point numbers are used for real (decimal) 
numbers and are inexact

• Addition of small and large numbers can cause problems
• Do not make code that relies on checking whether two

floats are equal
– Integers, on the other hand, are okay!

• Numerics solve practical mathematical problems
– Algorithms behave differently

• Some are faster than others
• Some put stricter requirements on the problem

– We will learn algorithms for numerical integration, equation
solving and differential equation solving.
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Questions?


