
TDT4127 Programming and Numerics
Week 35
Programming basics and floating point numbers

2

Learning goals

• Goals
– Learn about programming
– Learn about using Python
– Learn about programming environments
– Learn about data types

• Curriculum
– Starting out with Python, ch. 1

3

What is programming?

• Telling the computer exactly what to do
– We use a programming language to give instructions
– Python is one of many programming languages
– Programming language gets compiled into machine code

• Luckily, this process is invisible to us
– The machine code basically boils down to large amounts of:

• «Read this number»
• «Add these numbers»
• «Multiply these numbers»
• «Check if a > b»
• «Switch to this instruction»

4

What is a program?

• A set of instructions telling the computer what to do.
– Declare variables and assign values to them

• As in mathematics: «Let x = 5. Let y = 6».
– Do calculations with variables

• As in mathematics: «Let z = x + y»
– Make branching decisions

• More of this than in mathematics: «If z > 10, do <something>»
– Other high-level instructions

• Plot graphs, show video, look for user input, etc.

• Programs execute line by line, just like we read recipes.
– What’s written first, happens first.

5

How to install and use Python

• Download Python here
– Get the version for your operating system
– Choose standard installation

• You can use IDLE (now installed) to write/run programs
– Two ways to do this

• «Live» programming in the shell, like using a calculator
– Mostly useful for testing functionality, data is lost when IDLE is closed

• Scripted programming: write code in a separate file, then execute
– Standard way of writing programs, saving code for later on

– See the introductory exercise or do a Python tutorial online

• Python is a nice programming language
– Hides some of the gritty details behind readable code
– Easier to focus on the actual functionality instead of details

https://www.python.org/downloads/

6

Programming versus mathematics

• Computer: Physical, all information is stored digitally
(on/off states of transistors/capacitors) as 0’s and 1’s
– Space limitation! We can only have so many units to store data.

π = 3.14159265359
• Mathematics: Information is abstract, represented

symbolically
– No space limitation! We can speak of infinitely large/small

quantities.
π = π

7

Programming versus mathematics
• Mathematics (or physics)

– Equations express truths, e.g.
• (" + $)& = "& + 2ab + $&
• E = mc2

– The equality symbol = means the left side is equal to right side
• Programming:

Statements are imperative sentences, giving orders:
= means assignment ,
x = 3; «let x be 3»
x = x + 1; «calculate 3+1, let x now be 4»

(this would be meaningless as a mathematical equation)

== means comparison, x == y
if x and y have the same value, == will calculate to True, otherwise False

In both cases we instruct the computer to do something
(=) remembering a value in a variable,
(==) make a comparison, conclude with True or False

8

Data types

• This is quite hidden when using Python, but a computer
has different ways of representing different kinds of data.
– Strings (words or letters) are one data type
– Numbers are split in three data types:

• Integers: Whole numbers
• Floating point numbers (floats): Real numbers
• Complex numbers (not used in this course)

– Integers and floats have different representations and uses

9

Different types of numbers

• Computers are limited
– By the number of transistors in their processing units
– By the number of bytes of storage available

• Numbers are unlimited – in different ways
– Integers (…,-2,-1,0,1,2,…) are countably infinite and can be

infinitely large
– Real numbers (all decimal numbers) are uncountably infinite;

between numbers a and b there are infinitely many more
• Infinitely many numbers in (0.1,0.2), but also in (0.11,0.12)

• We need limited representations of unlimited numbers
– Depending on what kind of number it is

10

Integers

• We write our whole numbers (integers) in base 10:
• 3145 = 5*1 + 4*10 + 1*100 + 3*1000
• The k’th spot represents multiples of 10k-1

• Computers are constructed in terms of bits (on/off
switches) and most naturally use base 2:

• 100101 = 1*1 + 0*2 + 1*4 + 0*8 + 0*16 + 1*32
• The k’th spot represents multiples of 2k-1

• 100101 is a 6 bit number

• Representations of integers are exact

11

Integers

• For two computers make the same sense of a number,
we need standards.
– A standard long signed integer (Python default) has 32 bits

• 1 bit to assign negative/positive values

• 31 bits to represent number value

• Ex: -131 (base 10) = 00000000000000000000000010000011

• Largest value 1*20 + 1*21 … + 1*230 = 2*230 – 1 = 2 147 483 647

– Python can represent «infinitely» large integers

• This happens «behind the scenes», we don’t need to take care

12

Floating point numbers

• Decimal numbers can be both infinitely large and long
– For example, π is infinitely long

• π = 3.14159265359…
– We can still use it mathematically:

• A = πr2

– When calculating, we use a truncated value with an uncertainty:
• π = 3.14 (± 0.005)

– We do this for other infinitely long numbers as well:
• 1/3 = 0.3333 (± 0.005)

• Our representation of decimal numbers must balance
magnitude and decimal point precision.

13

Floating point numbers

– Floats are a tradeoff between size range and accuracy
– Based on scientific notation for numbers

• Avogadro’s number: 1023×6.022140857
• Electron rest mass: 10−31×9.109383561
• Large range of numbers, here using only 12 digits (base 10 numbers).
• Uncertainty lies in the last digit

– Floating point numbers use the same idea, but in base 2
• a = (-1)sg × 2e-b × s

– Sign: sg is 1 bit representing 0 or 1, allows negative/postive numbers
– Exponent: e is a positive integer, adjusts size
– Bias: b is a predetermined integer allowing for negative exponents
– Significand: s is a number between 1 and 2 of the form

s = 1.s1s2s3s4s5s6...
= 1 + s1×2-1 + s2×2-2 + s3×2-3 + s4×2-4 + s5×2-5 + s6×2-6 + …

– This is like scientific notation in base 2, with uncertainty in the last digit.
– More in Exercise 1, after which we will mostly not have to worry about them.

14

Operations with floating point numbers

• Addition/subtraction requires care due to roundoff error
– To add two numbers we match their exponents, so the smaller

number loses significance
– Example in base 10: 12345.67 + 1.224567 with 7 digit precision:

12345.67
+ 1.224567
= 12346.894567 ≈ 12346.89

– Same effect as adding 1.22 since the last four digits are lost.
– When adding a large amount of small numbers to a larger

number, we lose precision unless it is done carefully.
• Kahan’s algorithm is an algorithm for doing so. Not curriculum.
• Other workarounds exist.

– Not standard due to the extra computation time needed.

15

Operations with floating point numbers

• Multiplication/division are safe
– We add/subtract exponents and multiply/divide the significands.

• Checking for equality is very unsafe
– If a and b are floats, a = b if all their bits are the same.
– Due to imprecision, numbers that should be equal after some

computation, may not be equal.
– Example: Are d = (a + b) + c and e = a + (b + c) equal?

a = 123456.7, b = 123.4567, c = 0.4567891

d = 123580.2 + 0.4567891 = 123580.7
e = 123456.7 + 123.9135 = 123580.6

16

Information about exercises

• Special teaching assistants have been assigned for
numerics questions

– Sitting in A3-107 at Realfagbygget at given hours:

• Mondays 10:00 – 16:00
• Tuesdays 10:00 – 16:00
• Wednesdays 12:00 – 16:00
• Thursdays 10:00 – 12:00
• Fridays 10:00 – 16:00

– Programming questions can be asked at any computer lab.

17

Summary

• Install Python, get started on programming!
• Computers operate with different types of numbers
• Integers are used for whole numbers and are exact
• Floating point numbers are used for real (decimal)

numbers and are inexact
• Addition of small and large numbers can cause problems
• Do not make code that relies on checking whether two

floats are equal
– Integers, on the other hand, are okay!

18

Questions?

