TDT4127 Programming and Numerics

Torbjørn Ringholm, researcher, Department of Mathematical Sciences Office: 1338 in Sentralbygg II (Gløshaugen) Email: torbjorn.ringholm@ntnu.no

□ NTNU

Course contents

- Learn basic programming
 - The programming language we will use is **Python**
 - Programming lectures are shared with TDT4110
 - Note: Programming lectures are given in Norwegian
 - *Differences* from TDT4110
 - Instead of ICT theory you will learn about numerics.
- General knowledge of numerical mathematics
 - Knowledge of practical algorithms to approximate solutions to mathematical problems such as
 - Integration
 - Solving equations
 - Solving ordinary differential equations

Why do we need to know this?

- ICT is used everywhere and knowledge of ICT is a funtamental requirement within technical (and to some degree non-technical) jobs today.
- Examples: Digitalization of health services, music production, travel planning, education, all kinds of simulation, robotics, computer-aided design etc.
- It pays to know programming it is much easier to get a job with programming skills.

Why do we need to know this?

How does one calculate integrals like

$$\int_{a}^{b} \tan(\cos(\sin(e^{x^{5}}))) \mathrm{d}x?$$

Answer: By approximating them very closely.

The same goes for solving equations like

$$\log(\cos(x^2)) = \frac{e^{x^3}}{1 + \sqrt{x}}$$

We solve them approximately, using algorithms

What can we use this for?

Numerics is a centerpiece of all computation-based sciences.

The Rosetta landing (2016) would not have been possible without excrutiatingly precise calculations.

Kilde: https://en.wikipedia.org/wiki/Rosetta_(spacecraft)

Goals for Programming and Numerics

Knowledge goals: The students will

- Have basic knowledge of procedural programming.
- Have basic knowledge of the process from problem to working program
- Have basic knowledge of numerical methods

Evaluation form:

• *Digital* exam **30.11.2018**, at 09:00.

Goals for Programming and Numerics

Skill goals: The students will

- Be able to apply basic concepts in practical procedural programming.
- Be able to use relevant programming tools.
- Be able to analyze a problem, find a process and data structure to solve it, formulate a solution as pseudocode or a flow scheme and program and test a solution using Python.
- Be able to complete minor programming projects.
- Be able to perform numerical calculations using Python.

How will the teaching be organized?

- Lectures:
 - Numerics: 1 hour, only for TDT4127
 - Python: 2 hours, shared with TDT4110
 - Exercise lectures: 2 hours, shared with TDT4110
- Mandatory exercises:
 - Ordinary exercises: «homework»
 - 8 in total, approved by student assistant during lab hours
 - Auditorium exercies: «exam preparation»
 - 2 in total, done in auditoriums in the same way as exams (digital)
 - Requirements: 8 av 10 approved exercises, of which at least 1 must be an auditorium exercise.
 - In addition: A mandatory project exercise equivalent to two exercises.
- Your own effort in doing this is key!

When/where will the teaching be?

- Lectures:
 - Numerics: Fridays 16:15-17:00 in R3
 - Python: Tuesdays 10:15-12:00 in R1
 - Can be VERY full. You should consider swapping to:
 - Fridays 08:15-10:00 in F1
 - Mondays 14:15-16:00 in R1
 - Wednesdays 08:15-10:00 in EL5
 - Exercise lectures: Fridays 14:15-16:00 i F1
- Exercise hours:
 - «Laboratory hours» all days 08:15-20:00 in the A-block of Realfagbygget (A2-121, A3-100, A3-103).
 - «Drop in»-hours, just show up and get in the queue
 - TDT4110 will be offered «personal» lab hours based on study programs

 this does not apply to you due to your individualized schedules.

Tentative lecture plan

• This is a new course – not all is set in stone!

Uke	Programmering	Numerikk
34		Introduksjon
35	Introduksjon til programmering	Introduksjon til programmering
36	Program, variable og input	Oppfriskning av matematikk
37	Betingelser og logiske uttrykk	Numerisk integrasjon
38	Løkker (for- og while-løkker)	Numerisk integrasjon
39	Definisjon og bruk av funksjoner	Numerisk ligningsløsing (1D)
40	Funksjoner med retur og moduler	Numerisk ligningsløsing (1D)
41	Lister og tupler	Løsning av lineære systemer
42	Mer om strenger	Løsning av lineære systemer
43	Filer og unntak	Numerisk ligningsløsning (flerdim)
44	Oppslagslister og mengder	Numerisk løsning av differensialligninger
45	Rekursjon og algoritmer	Numerisk løsning av differensialligninger
46	Lage større systemer i Python	Numerisk integrasjon med adaptiv Simpson
47	Repetisjon	Repetisjon

Curriculum

- Programming:
 - All foils, exercises and solutions thereof
 - Book: «Starting out with Python», 4th ed, Tony Gaddis, Pearson
 - You can also use older versions, see the course wiki
- Numerics:
 - Lectures, foils, exercises/solutions and additional notes.
 - Extra material: «Programming for Computations Python» <u>https://link.springer.com/book/10.1007%2F978-3-319-32428-9</u>

More about the exercises

- **<u>The exercies</u>** is where you learn and get stuck the most
 - Important to do them yourselves and understand them
 - Regular exercies (8 in total) guided by stud.ass. 08:15-20:00.
 - If you're stuck, drop by and ask!
 - For tougher questions, ask und.ass. or vit.ass.
 - You can choose certain exercises yourselves but **must** do the numerics exercises.
 - Online help and discussion at Piazza:
 - https://piazza.com/ntnu.no/fall2018/tdt4110
 - Auditorium exercies (2 stk) are done in auditorium at given times
 - Must have at least one such approved to take the final exam
 - Given on the same digital platform (Inspera) as the final exam
- Work with and understand the exercises!

Information channels

- Blackboard is used for messages and exercises
- All info about the course is on the course wiki
 - <u>https://www.ntnu.no/wiki/display/itgk/Forside</u>
- Online discussion and questions at Piazza
 - https://piazza.com/ntnu.no/fall2018/tdt4127/home
- Youtube videos on programming by Guttorm
 - <u>https://www.youtube.com/channel/UCNwXyHIGGOWZLzTy0-hM63w/feed</u>

Reference group

- Quality assurance for the course, especially important since it is new
 - Feedback on the curriculum and learning activities
 - Proposals for improvement in the short and long terms
- Requires little work (ca. 4 hours in total)
- Looks good on a CV
- One representative per program?

Important before next time

- Remember that the programming lectures are full!
 - Can be smart to change from the given lectures
- Attend the exercise lecture
 - Important information on exercises will be given
 - You will recieve help installing Python
 - Bring your own computer!
 - More information will be given about e.g. user support
- Numerics lectures start in two weeks
 - Next week is intensive start-up lecture with Python

Questions?

