NTNU

Kunnskap for en bedre verden

Mission design for NTNU SmallSat a Hyper-spectral imaging mission

Mariusz E. Grøtte¹, Roger Birkeland², Joao Fortuna¹, Kanna Rajan^{1;3}, Tor A. Johansen¹, J. Tommy Gravdahl¹

 ¹ Center for Autonomous Marine Operations and Systems (AMOS), Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
 ² Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
 ³ Engular of Engineering, University of Darte, Dartwool

³ Faculty of Engineering, University of Porto, Portugal.

Image: Toxic Bloom off the Coast of Norway. Credit: NASA

Vision: the Robotic Platform Architecture

- High spatio-temporal resolution for oceanographic observations
- De-conflicting time and space is critical
- Observations in hours not days → space segment

Oceanography off Norway's coast

- Study of dynamic oceanographic processes (fronts, anoxic zones, plumes, blooms...)
- Maritime Surveillance

Fig.: Phytoplankton blooms observed from space. Left: bloom observed 10 th June 2006 by Envisat's MERIS instrument off the coast of Norway. Right: bloom observed in the Baltic Sea acquired by MERIS on 11 th July 2010. Credit: ESA

Concept of Operations

Fig.4 Concept of Operations. Satellite is in retrograde near-polar orbit and is operational about 5 min during one pass per day. Constellation is designed with baseline 3 revisits per day. Preliminary suggestions aim at a sun-synchronous orbit.

NTNU

HSI Payload

- Spectral resolution of 5 nm
- Spectral range: 400 900 nm (VIS-NIR), usable: 100 bands
- Size of 1/3 U, and mass of <300 g
- Ground sampling distance (GSD) 100 meter/pixel

Credit: M. Guelman, F. Ortenberg / Acta Astronautica 64 (2009) 1252 –1263 Micro lens HSI Credit: Fred Sigernes <u>http://fred.unis.no</u>

Landsat 7

ACRIMSAT

ERBS

Terra

GuikSCAT

Mission Design

TRMM SAGE III/METEOR-3M

UARS

SORCE

GRACE

SeaWiFS

Aura

EP-TOMS

NMP/ED-1

ICESat

Mission Objectives

- 1) Provide and support oceanography through
 - Hyper-Spectral Imaging
 - Autonomous communications in an concert of robotic agents in Atlantic Ocean
- 2) To collect statistical data and detect and characterize:
 - spatial extant extent of algal blooms
 - emittance from fluorescence generating microorganisms
 - other substances resulting from aquatic habitats and pollution

- 3) Investigate analytical reducedorder sizing relationships for
 - identified performance characteristics
 - constituent SmallSat properties as related to oceanography

 Build strong competence and strengthen prospect of SmallSats as supporting intelligent agents in integrated autonomous robotic systems for dedicated marine and maritime applications

Mission Requirements

Level 0 mission statement

NTNU SmallSat mission shall, through targeting high-resolution Hyperspectral Imaging, demonstrate proof-of-concept oceanographic observations.

S/C shall successfully launch, deploy and initialize operations in LEO at 400- 700 km altitude	Shall enable HSI operations over target area in the Atlantic Ocean	Shall identify and track a target ocean area with precise tracking	Shall take 10 HS images with required spectral bands in 400-900 nm range that will include at least 1 particular signature of scientific target	Ground user shall be able to download at least 10 on-board spatially compressed images and on-board telemetry data for direct/indirect interpretation	Shall be operational for 30 days and enable mission updates during peak- season and target localization
Shall detumble with full mission operations support during 10 orbits	Target area shall be at least FoV of 50x50 km ground Target area shall	Target area shall be observable and imaged by S/C given max. 1250 km movement	Processed images shall have 500 x 500 pixels resolution where each pixel has at max. 100 m	Radiometric, spectral, spatio-temporal, geometric data processing must happen in-orbit	Must adhere to Space Debris Policy and enable de-orbit upon end-of-life within 25 years
Must enable initial mission plan	be observed at least 3 min per pass with 3 passes per day	(westwards) cross- track on previous /subsequent pass	Detections on signatures from 100 spectral bands must be made during observation	Model update of mission data shall happen in-orbit	Space segment shall enable updates on mission planning
space segment operations	Target shall be observed at approx. 60 deg N	Must enable GSD < 100 m		Space segment agent shall be coordinated with other robotic agents indirectly	Space segment shall support re-scheduling of planned events by
Shall enable sleep on/ off during on/ off HSI demands autonomously and on command	and 10 deg E Shall operational at least 10 min/day, during	Larget area shall be observed with max. 100 m precision discrepancy	is set to observe must be at ? SNR Raw images shall have	Shall downlink data at least 200 kbit/s to at least 1 ground station	ground command.
Level 1 mission	brightest time of the day in peak season	Slew maneuver shall be prepared for and enabled prior to observing operations	$\Delta x = 400$ m and $\Delta y = 83$ m spatial resolution		

requirements

Detailed Success Criteria in Initial-Operations

Success Criteria	Min	Full
Launch of SmallSat	\checkmark	
Deployment of SmallSat in LEO	\checkmark	
Identification after 1 orbit SmallSat	<	
Tracking of SmallSat over 1 orbit		\checkmark
Power systems ON	\checkmark	
Communications achieved	\checkmark	
Enable slew maneuver to target area		\checkmark
HSI operations over target area (10 img)	\checkmark	
Acquire images with required spectral bands		\checkmark
Downlink on-board processed data		\checkmark
Enable sleep off/on		\checkmark
Repeat in 4 consecutive passes giving 4 images	\checkmark	
Repeat until end-of-life		\checkmark

Architectures

A. Mission Concept	HSI mapping of the ocean with autonomous on- board processing of mission data, then transmitted after pass. Ground commands on mission plan.
B. Controllable Subjects	None
C. Passive Subject	Oceanography through Hyperspectral light
D. Payload	Small aperture HSI
E. Spacecraft Bus	2-6U size; 3-axis stabilization; spacecraft pointing; body-mounted solar panels; onboard GPS; onboard orbit control; possibly micro- propulsion
F. Orbit	SSO; 1-satellite
G. Launch System	PSLV (depends on orbit)
H. Ground System	Dedicated: NTNU; Commercial (e.g. KSAT)
I. Communications Architecture	Store & dump data; TM/TC-transceiver; >2 ground stations; UHF-band uplink, X-band downlink; SDR
J. Mission Operations	Fully automated ground stations; part-time operations on demand; Indirect updates on mission to/from other robotic agents

Rank	Mission Architecture
1	A3-B1-C1-D1-E1-F1-G1-H1-I1-J1
2	A1-B1-C1-D1-E1-F2-G1-H1-I2-J1
3	A3-B1-C1-D1-E1-F2-G1-H1-I1-J1
4	A3-B1-C1-D1-E1-F1-G1-H1-I2-J1
5	A2-B2-C1-D1-E1-F1-G1-H1-I6-J2

Alternative trade-offs

- A
 - Send raw data
 - Autonomous platform
 - Detect signatures
- B
 - Track UAVs on Earth
 - F
 - LEO (i=75-90 deg)
 - 2 satellites
 - - S-band uplink
 - S-band downlink
- J
 - Direct updates on mission
- Have now 40 architectures to choose from
- TOPSIS evaluation

Orbit – SSO or LEO

Target: SmallSat

Observer: NT	NU_Trondheim				
Start Time (UTC)	Stop	Time (UTC)	Duration (s)
01 Jul 2018	08:15:41.561	01 J	ul 2018	08:22:10.578	389.01718687
01 Jul 2018	09:49:46.056	01 J	ul 2018	09:58:08.545	502.48963548
01 Jul 2018	11:26:36.876	01 J	ul 2018	11:33:17.025	400.14833029
01 Jul 2018	22:55:51.403	01 J	ul 2018	23:03:37.550	466.14723962
02 Jul 2018	00:31:18.491	02 J	ul 2018	00:39:36.433	497.94238752
02 Jul 2018	02:07:27.362	02 J	ul 2018	02:13:00.503	333.14039593

Slew maneuver

Pointing accuracy = 0.1 deg (relative to target area)

STK Mission Analysis

Number of passes (HSI)

Satellite-NTNU_SmallSat-To-AreaTarget-Target: Access Summary Report

NTNU_SmallSat-To-Target

Access		Start Time (UTCG) Stop Time (UTCG)	Duration (sec)
	1	22 Jun 2019 06:33:12.372 22 Jun 2019 06:41:57.	550 525.178
	2	22 Jun 2019 08:05:55.694 22 Jun 2019 08:15:47.	845 592.152
	3	22 Jun 2019 09:38:49.748 22 Jun 2019 09:50:20.	626 690.877
	4	22 Jun 2019 11:12:58.869 22 Jun 2019 11:25:09.	847 730.978
	5	22 Jun 2019 12:49:06.168 22 Jun 2019 12:59:55.	123 648.955
	6	22 Jun 2019 14:28:10.698 22 Jun 2019 14:33:51.	045 340.347
	7	22 Jun 2019 22:37:58.239 22 Jun 2019 22:45:55.	163 476.924
	8	23 Jun 2019 00:12:17.662 23 Jun 2019 00:23:48.	056 690.394
	9	23 Jun 2019 01:47:06.077 23 Jun 2019 01:59:07.	434 721.357
	10	23 Jun 2019 03:21:53.119 23 Jun 2019 03:32:49.	067 655.948
	11	23 Jun 2019 04:56:17.722 23 Jun 2019 05:05:38.	024 560.302
Global Statistics			
Min Duration	6	22 Jun 2019 14:28:10.698 22 Jun 2019 14:33:51.	045 340.347
Max Duration	4	22 Jun 2019 11:12:58.869 22 Jun 2019 11:25:09.	847 730.978
Mean Duration			603.037
Total Duration	h=5	550 km, duration = 12,12 min	6633.411

NTNU

Number of passes (Comms.)

Facility-NTNU_Trondheim-Receiver-Antenna-To-Satellite-NTNU_SmallSat: Access Summary Report

Antenna-To-NTNU_SmallSat

	Access	Sta	rt Time (UTCG)		Stop Time (UTCG)		Duration (sec)
	1	22 Jun	2019 06:33:34.4	37 22	Jun 2019	06:41:31.627	477.190
	2	22 Jun	2019 08:05:53.3	75 22	Jun 2019	08:15:18.233	564.858
	3	22 Jun	2019 09:38:25.0	27 22	Jun 2019	09:49:54.097	689.070
	4	22 Jun	2019 11:12:17.6	27 22	Jun 2019	11:24:44.593	746.966
	5	22 Jun	2019 12:48:12.3	32 22	Jun 2019	12:59:27.153	674.821
	6	22 Jun	2019 14:27:23.6	46 22	Jun 2019	14:33:05.490	341.844
	7	22 Jun	2019 22:38:35.0	17 22	Jun 2019	22:46:29.674	474.658
	8	23 Jun	2019 00:12:44.3	91 23	Jun 2019	00:24:33.934	709.543
	9	23 Jun	2019 01:47:31.3	76 23	Jun 2019	01:59:53.494	742.118
	10	23 Jun	2019 03:22:20.4	06 23	Jun 2019	03:33:20.981	660.575
	11	23 Jun	2019 04:56:47.7	45 23	Jun 2019	05:05:41.238	533.493
Global Statistics							
Min Duration	6	22 Jun	2019 14:27:23.6	46 22	Jun 2019	14:33:05.490	341.844
Max Duration	4	22 Jun	2019 11:12:17.6	27 22	Jun 2019	11:24:44.593	746.966
Mean Duration							601.376
Total Duration							6615.135

h=550 km, duration = 12,45 min

NTNU

Simulations

NTNU_SmallSat Classical Orbit Elements FOR_UNFUNDED_EDUCATIONAL_USE_ONLY Time (UTCG): 22 Jun 2019 09:41:00.000 Semi-major Axis (km): 6928,140000 Eccentricity: 0.000000 Sun Inclination (deg): 98.500 RAAN (deg): 106.408 Arg of Perigee (deg): 0.000 NTNU_Trondheim True Anomaly (deg): 58.031 Mean Anomaly (deg): 58.031 WU_SmallSat NTNU_SmallSat ICR Axes

22 Jun 2019 09841:00.000 Fime Step: 10.00 Sec

NTNU_SmallSat Classical Orbi	Elements_UNFUNDED_E	DUCATIONAL_USE_ONLY	bing
Time (UTCG): 22 Jun	2019 09:44:20.000		
Semi-major Axis (km):	6928.140000		
Eccentricity:	0.000000		
Inclination (deg):	98.500 _m		
RAAN (deg):	106.411		
Arg of Perigee (deg):	0.000		
True Anomaly (deg):	70.561		
Mean Anomaly (deg):	70.561		
		TNU-Sma-I-I-Sat-	
number of	NTNUL Tron	dheim	
	and the second second		
and the second sec			
and the second sec	- 15 7.	Standing (Providencial)	
	Constants Top	/ Target	
	A A A A A A A A A A A A A A A A A A A		
NTNU_SmallSat ICR Axes			AG AG
		State of States of States	

Yaw-Pitch-Roll at Slew

FOR_UNFUNDED_EDUCATIONAL_USE_ONLY

Solar Panels

Mass Budget

Subsystem	Nominal Mass (g)	Margin (%	Mass w. Margin (g)
Payload	250	20	300
Structure (3 U)	390	5	409,5
Mechanisms/Deployment	200	10	220
TT&C	55	5	57,75
ADCS (other)	64	10	70,4
Reaction Wheels (ADCS)	940	10	1034
Star-tracker (ADCS)	280	10	308
Fine Sun Sensor (ADCS)	9	20	10,8
Magnetorquers (ADCS)	108	20	129,6
Antenna (S-band)	110	15	126,5
GPS	24	15	27,6
OBC	69,5	5	72,975
EPS	86	5	90,3
Batteries	500	5	525
Thermal	240	10	264
Solar Panels	468	5	491,4
Total	3793,5		4137,825
Total with extra Margin (10%)	4172,85		4551,6075

Ref: Survey of COTS from Gomspace, Hyperion Technologies, Clydespace

https://gomspace.com/

https://www.clyde.space/

Mass Budget

Power Budget (Average)

Subsystem	Power (W)	Margin (%)	Power w. Margin (W)
Payload	3	5	3,15
Mechanisms/Deployment	0,01	5	0,0105
TT&C	1	5	1,05
ADCS (other)	1	5	1,05
Reaction Wheels (ADCS)	0,9	5	0,945
Star-tracker (ADCS) 5 Hz	0,7	5	0,735
Fine Sun Sensor (ADCS)	0,00001005	5	1,05525E-05
Magnetorquers (ADCS)	3,9	5	4,095
Antenna (S-band) Idle	0,2	5	0,21
GPS	1,155	5	1,21275
OBC	2,3	5	2,415
EPS	1	5	1,05
Batteries	0,064	5	0,0672
Thermal	2	5	2,1
Solar Panels	0	5	0
Total	17,22901005		18,09046055
Total with extra Margin (10%)	18,95191106		19,89950661

Ref: Survey of COTS from Gomspace, Hyperion Technologies, Clydespace

https://gomspace.com/

https://www.clyde.space/

Power Budget (TX Transmitting)

TX ON (Comms. Only)						
Subsystem	Peak Power (W)	Margin (%)	Peak Power w. Margin (W)			
Payload	0	5	0			
Mechanisms/Deployment	0	5	0			
TT&C	1	5	1,05			
ADCS (other)	1	5	1,05			
Reaction Wheels (ADCS)	1,8	10	1,98			
Star-tracker (ADCS) 20 Hz	0,7	10	0,77			
Fine Sun Sensor (ADCS)	0,00001005	10	0,000011055			
Magnetorquers (ADCS)	3	10	3,3			
Antenna (S-band) TX	10,7	10	11,77			
GPS	1,155	5	1,21275			
OBC	2,3	5	2,415			
EPS	1	5	1,05			
Batteries	0,064	5	0,0672			
Thermal	0	5	0			
Solar Panels	0	5	0			
Total	22,71901005		24,66496106			
Total with extra Margin (10%)	24,99091106		27,13145716			

Ref: Survey of COTS from Gomspace, Hyperion Technologies, Clydespace

https://gomspace.com/

https://www.clyde.space/

Power Budget (HSI Operations)

HSI + Slewing						
Subsystem	Peak Power (W)	Margin (%)	Peak Power w. Margin (W)			
Payload	8	5	8,4			
Mechanisms/Deployment	0	5	0			
TT&C	2	5	2,1			
ADCS (other)	3	5	3,15			
Reaction Wheels (ADCS)	4,65	10	5,115			
Star-tracker (ADCS) 20 Hz	2,8	10	3,08			
Fine Sun Sensor (ADCS)	0,0402	10	0,04422			
Magnetorquers (ADCS)	3	10	3,3			
Antenna (S-band) TX	0,2	5	0,21			
GPS	1,155	5	1,21275			
OBC	2,3	5	2,415			
EPS	1	5	1,05			
Batteries	0,064	5	0,0672			
Thermal	0	5	0			
Solar Panels	0	5	0			
Total	28,2092		30,14417			
Total with extra Margin (10%)	31,03012		33,158587			

Ref: Survey of COTS from Gomspace, Hyperion Technologies, Clydespace

https://gomspace.com/

https://www.clyde.space/

Processing and Control

D NTNU

Preliminary Data Budget

Estimation of size of one target measurement packet, one pr. pass:

Compressed (spectral domain) 500 pixels x 500 pixels x 2 bytes/pixel x 10 channels = 5 Mbytes = 50 Mbits S-band: 50 Mbits / 0.1 Mbits/s = 500 s 50 Mbits / 1 Mbits/s = 50 s X-band: 50 Mbits / 10 Mbits/s = 5 s 50 Mbits / 20 Mbits/s = 2.5 s

Uncompressed:

500 pixels x 500 pixels x 2 bytes/pixel x 100 channels = 50 Mbytes = 500 Mbits S-band: 500 Mbits / 0.1 Mbits/s = 5000 s 500 Mbits / 1 Mbits/s = 500 s X-band: 500 Mbits / 10 Mbits/s = 50 s 500 Mbits / 20 Mbits/s = 25 s

- Attitude log information: 100 Hz gives additional 1-2 MB
- Duty Cycle for downlink: about 10 min available in one day

→ Approx. 60 Mbit total

Wish for 1-2 Mbit/s downlink, although 200kbit/s in several consecutive passes is ok. S-Band or X-band

Verification and Validation Plan

Project Timeline

	2017																	
Month	1 July		Aug				Sep			Oct								
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A - Preliminary Mission Design Review	*																	
B - Requirements Assessment & Plan Development																		
B1 - Define mission requirements and constraints																		
B2 - Identify mission success criteria and drivers																		
B3 - Define mission concepts																		
B4 - Define mission architectures	_																	
B5 - Characterize and evaluate mission concepts &																		
architectures																		
B6 - Define critical mission requirements																		
B7 - Evaluate mission utility																		
88 - Mission requirements review										*								
C - Conceptual & Preliminary Mission Design																		—
C1 - Mission analysis																		
C2 - Develop conceptual mission plan																		
C3 - Develop a back-up plan																		
C4 - Develop financial plan																	-	
C5 - Identify space environment hazards																	-	
C6 - Budgets (power, data, mass etc.)																		_
C7 - Preliminary Mission Design Review																		*
D - Detailed Mission Design, Concept Selection & Verification and Validation Plan																		

Roadmap

Roadmap: how

Available platforms

Producer	UTIAS SFL	Tyvak	ISIS	GOMSPACE
Make/model	CanX-3	Intrepid		GOMX
Form factor	3 U	3 U	3 U	3 U
Build/make	Costum	Costum	Pumpkin/PC404	Pumpkin/PC404
Architecture	Seperate subsystems	Integrated	Seperate subsystems	Seperate subsystems
Platform mass	2,5 kg	1,3 kg		1,5 kg
Average power to payload	1-2 W @ 100%	3,5 W		3,68 W
Peak power	2-7 W	15 W		9,4 W
Weight to payload excluding ADCS	1 kg	2,6 kg		2,5 kg
Volume to pavload excluding ADCS	10	2.7 U		2.3 U
Downlink capacity	32 k - 1 Mbit			< 2 Mbit
Flight proven	Yes	Yes	Yes	Yes
Maturity	Mature	New	New	Mature
,				

Clyde Space

3U

Payload Volume: Up to 1.6U

Power Generation: Up to 50W peak

Payload Power: >12W orbit

average (typical)

Energy Storage: 40Wh (typical)

/ expandable to >100Wh

Pointing: <3.5 arcmin

Orbit Knowledge: <10m; <1m/s

Data Storage: 4GB Flash NVM,

expandable via microSD

Data Downlink: Up to 100Mb/s

Frequency: V/UHF, S-Band, X-Band

Orbit attitude/lifetime: LEO/up to 5 years

Launch options - Tyvak

Future Commercial Launches Opportunities									
Date	Mission	Destination	Availability						
Q3 2017	Commercial	600km SSO	Yes	CubeSats, SmallSats					
Q3 2017	Commercial	500km SSO	Full						
Q4 2017	Commercial	600km SSO	Yes	CubeSats, SmallSats					
Q4 2017	Commercial	500km SSO	Yes	CubeSats, SmallSats					
Q1 2018	Commercial	550km SSO	Yes	CubeSats, SmallSats					
Q2 2018	Commercial	600km SSO	Yes	CubeSats, SmallSats					
Q2 2018	Commercial	GTO	Yes	CubeSats, SmallSats					
Q3 2018	Commercial	500km SSO	Yes	CubeSats, SmallSats					
Q4 2018	Commercial	600km SSO	Yes	CubeSats, SmallSats					
Q1 2019	Commercial	500km 40 deg.	Yes	CubeSats, SmallSats					

Launch options

- ISIS

LAUNCH VEHICLE	LAUNCH PERIOD	ORBIT PARAMETERS		CONTAIN	IERIZED PAYLOAD	CAPACITY	MICROSATELLITE CAPACITY			
		ALTITUDE	INCLINATION	1U/2U/3U	6U/6UXL	120	16U	< 25 KG	< 100 KG	< 250 KG
Asian	Q4 2017	500-600 km	SSO	Ask	Ask	Ask	Full	Full	-	-
USA	H2 2017	450-500 km	SSO	Ask	Full	Full	Full	Ask	Ask	Ask
Asian	Late 2017	500-550 km	SSO	~	~	×	*	*	~	*
Asian	Late 2017	~500 km	SSO	Ask	Full	Full	-	-	-	-
USA	Q1 2018	500-600 km	SSO	~	*	Ask	Ask	Ask	Ask	-
Asian	Q1 2018	500-550 km	SSO	~	~	~	~	*	~	*
USA	Q1 2018	450-550 km	SSO	~	~	~	Ask	-	-	-
Asian	H1 2018	550-650 km	SSO	~	~	~	~	Ask	Ask	-
Asian	H1 2018	~500 km	SSO	~	~	~	~	~	~	Ask
Asian	H1 2018	GTO	-	~	~	Ask	Ask	Ask	-	-
USA	Q2 2018	~500 km	55 incl.	~	~	~	Ask	-	-	-
Asian	Q2 2018	600-650 km	SSO	~	~	*	*	×	~	×
Asian	Q2 2018	450-500 km	SSO	~	~	~	*	~	~	~
USA	mid 2018	450-550 km	SSO	~	~	~	Ask	-	-	-
Asian	mid 2018	900+ km	66 incl.	~	*	*	Ask	Ask	Ask	-
Asian	mid 2018	450-500 km	45 incl.	~	*	*	*	×	~	~
Asian	Q3 2018	600-750 km	SSO	~	~	~	*	~	~	*
Asian	H2 2018	~800 km	SSO	~	*	*	Ask	Ask	-	-
European	H2 2018	LTO	-	*	Ask	-	-	Ask	-	-
Asian	H2 2018	450-500 km	SSO	~	~	~	~	~	~	~
European	Q4 2018	450-600 km	SSO	~	~	~	*	Ask	Ask	Ask
Asian	Q4 2018	500-550 km	SSO	~	~	*	*	×	~	×
Asian	Q4 2018	~650 km	SSO	~	~	*	*	~	Ask	-
Russian	H2 2019	450-600 km	SSO	~	~	~	~	~	~	~
European	Q4 2019	500-700 km	SSO	~	~	*	*	Ask	Ask	Ask
European	Q4 2019	450-600 km	SSO	~	~	~	*	Ask	Ask	Ask
European	Q1 2020	500-700 km	SSO	*	*	*	*	*	Ask	Ask
European	mid 2020	LTO	-	~	~	Ask	Ask	Ask	-	-
Russian	H2 2020	500-700 km	SSO	*	*	*	*	*	*	*
European	Q2 2020	GTO	-	~	~	~	*	~	Ask	Ask

Conclusions & Future Work

- Currently on mission-design and concept evaluation
 - Architectures to be determined soon
 - Orbit to be determined
 - Iteration on mission requirements
 - Feasibility and achievability for HSI payload and relatedorbit studies
- Developed HSI payload for UAVs, to be integrated in SmallSat. Built at NTNU.
- If first two missions are successful -> a pipeline of SmallSats will support coordinated oceanographic observations. Space segment shall provide higher temporal and spatial resolution.

Contact

- Mariusz Grøtte (Mission Design; Spacecraft Dynamics and Control)
- Email: mariusz.eivind.grotte@ntnu.no