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• Objective: Give scientifically based advice 
to the Norwegian defence regarding use of 
spectral imaging techniques 

• FFI group embraces the hyperspectral value chain: 
– Scene phenomenology and field trials 
– Sensor technology, design and testing 
– Hyperspectral image processing 
– Application studies 

 
• Comprehensive experience with 

hyperspectral imaging systems 
– VNIR, SWIR, MWIR, LWIR 
– Ground-based,  

airborne, satellites 
– Military applications 

Hyperspectral activities at FFI 



SYSIPHE - the world's best 
hyperspectral imaging system 

• French-Norwegian 
collaboration 
 

• Covers all bands, 
from 0.4 to 11.8 µm 
 

• Open to third-party users 
 

• France: thermal IR (ONERA) 
• Norway: daylight bands (NEO) 

+real-time processing (FFI) 
 
 

Rousset-Rouviere et al, «SYSIPHE system: A state of the art airborne hyperspectral imaging system. Initial results from the first airborne campaign», Proc. SPIE 9249, 92490V, 2014 



Very large wavelength range, excellent quality 



Compact spectral imaging concept 

Skauli, Torkildsen, Nicolas, Opsahl, Haavardsholm, Kåsen, Rognmo: «Compact camera for multispectral and conventional imaging based on patterned filters»,  
Applied Optics, Vol 53, Issue 13, 2014 



Compact spectral imaging concept 

Raw image sequence Spectral band images 

Image-based navigation 



Wide Field UAV Sensor Package 

• 3 CMOS cameras  with 1920x1200 pixels 
– Total across Field of View ~43° at ~3000 pixels 
– Frame rate up to 163 fps 

 
• A Pico 880 microcomputer for camera control and logging 
• GPS and MEMS IMU with FPGA-based synchronization and logging 

 
• Total mass < 1 kg 

Torkildsen, Haavardsholm, Opsahl, Datta, Skaugen, Skauli, «Compact multispectral multi-camera imaging system for small UAVs», Proc. SPIE 9840, 98401U, 2016  



Example spectral reconstruction 



Example spectral reconstruction 



Example spectral reconstruction 



The airborne target detection 
demonstrator system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Skauli, Haavardsholm, Kåsen, Arisholm, Kavara, Opsahl, Skaugen, «An airborne real-time hyperspectral target detection system», Proc. SPIE 7695, 76950A, 2010 
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• Hyperspectral camera: NEO HySpex VNIR-1600 
– 0.4 to 1 µm in 160 bands 

(binned to 40 bands for processing) 
– 1600 spatial pixels, pushbroom scan 
– 17-degree FOV, high spatial resolution: 

0.18 x 0.36 mrad pixel IFOV 
– Approx. 100 lines/s (autoset) 

 
• High-resolution panchromatic camera: Dalsa Piranha2 8k 

– 8192 square pixels, same FOV as HySpex 
– Nominally 5 x 10 hi-res pixels for each 

hyperspectral pixel 
 

• Navigation 
– dual-frequency GPS receiver 
– navigation-grade IMU 
– data synchronization unit 

Sensors 



Installation in a Cessna 172 

Camera frame replaces 
copilot seat 

Computers in baggage 
compartment 

Cessna 172 belonging to the flying club  
at Kjeller, modified with camera port by FFI 
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3 separate computers, for engineering convenience 
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• Design drivers 
– Large data rate: ~20 MB/s 
– Computationally intensive algorithms 

 
• Data rate is handled by nonlinear pipeline 

architecture implemented in C++ 
 

• For high compute performance,  
various techniques are available 
within each processing stage: 
– processor-specific numerical libraries 
– multicore processing (OpenMP) 
– Graphics processing unit (CUDA) 

Software framework for processing 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

Haavardsholm, Arisholm, Kavara, Skauli: «Architecture of the real-time target detection processing in an airborne hyperspectral demonstrator system», IEEE WHISPERS, 2010 
 
Tarabalka, Haavardsholm, Kåsen, Skauli: «Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing»,  
Journal of Real-Time Image Processing, Vol 4, Issue 3, pp 287-300, 2009 



Direct real-time georeferencing 
of push-broom cameras 



Direct real-time georeferencing 
of push-broom cameras 



Representing georeferencing as a                  
ray-tracing problem 

Opsahl, Haavardsholm, Winjum: «Real-time georeferencing for an airborne hyperspectral imaging system», Proc. SPIE 8048, 80480S, 2011 



Orthorectification example 

H
YPER

 - R
G

B 
PAN

C
H

R
O

M
ATIC

 

 
• On-the-fly orthorectification 



Rectification using the graphics hardware 

• The georeference describes a 3D surface (or a 2D grid) 
• The image is mapped onto the georeference surface 
• Very efficient when using the graphics hardware 



• GUI for FFIs airborne demonstrator system 
– Implemented using Qt (C++) 
– Runs the real-time processing 
– Displays processing status 

 
• Real-time rectification of push-broom images 

– Resolution is not fixed, 
but images are resampled in real-time 

– Based on texture mapping with OpenGL 
– Real-time adjustment of brightness and contrast 

 
• Geographic data 

– Georeferenced maps and photos 
– Points: Waypoints/Tracks/Routes/detections 

 
 

GUI for visualization and control 



Hyperspectral image processing 
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Hyperspectral image processing 

• Work mainly focused on target detection methods 
 

• Research and development of methods 
– Anomaly detection 
– Signature detection 
– Change detection 

 
• Focus areas 

– High resolution hyperspectral images 
– Exploit knowledge about the physical processes 
– Statistical mixture models 
– Forward modelling 
– Use of computational geometry rather than resampling 
– Real-time implementations, GPGPU programming 
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• Task: identify anomalous, "interesting" pixels 

• Statistical approach:  
Estimate a probability distribution for the data 
   ≈ background model 

• Method used here: 
1. Mixture of Gaussian distribution model for the 

background using an iterative stochastic parameter 
estimation method 

2. An image indicating how well each pixel fits with the 
background model is calculated 

3. Thresholding selects "interesting" pixels  
with low likelihood of being background 

Kåsen, Goa, Skauli: «Target detection in hyperspectral images based on multicomponent statistical models for representation of background clutter», Proc. SPIE 5612, 2004 

Anomaly detection 
based on multinormal mixture models 



Example: Spectral anomaly detection 
• Background: mixed forest, sand 
• Targets: sheets of different materials with varying 

spectral properties and mostly low visual contrast 
• Target layout in a matrix configuration: 

– columns of identical material 
– rows of similar illumination conditions 

spectral 
image 

RGB 
image 

Ground 
image 



• All targets detectable as spectral anomalies 
• Background clutter strongly suppressed 

 

Example: Spectral anomaly detection 



Hyperspectral anomalous change detection 

1. Estimate spectral change based on corresponding pixels 
– Uncertainties in registration, pixel footprint, … 

2. Model typical changes 
3. Detect anomalous changes 



Hyperspectral change detection 
Image 1 



Hyperspectral change detection 
Image 2 (1 month later) 



Hyperspectral change detection 
Objects that have appeared 



Spectral signatures 



Signature-specific detection 
Estimating radiance from reflectance 

sr dr br u a( ) ( ) ( ) ( ) ( ) ( )L L L L L Lλ = λ + λ + λ + λ + λ



Signature-specific detection 
based on forward modelling 
• Methods for atmospheric compensation are often inaccurate,  

especially for high resolution images and in areas that are not sunlit 
– Radiance image → Reflectance image ↔ Reflectance signature 

 
• An alternative approach is to model the variability of the received 

radiance given the reflectance signature (forward modelling) 
– Reflectance signature → Radiance signature model ↔ Radiance image 

 



Signature-specific detection 
Modelling radiance signature variability 

• Parameters that cause signature variability: 
– Imaging geometry 
– Time and place 
– Meteorological and atmospheric conditions 
– Background characteristics and scene 

geometry 
– … 

 
• Monte Carlo simulations of variability: 

– Draw parameters     from probability 
densities that are adapted to the current 
imaging scenario 

– Simulate the radiance signature using the 
physical model 

– The result is a set of simulated radiance 
signatures:  
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Haavardsholm, Skauli, Kåsen: «A physics-based statistical signature model for hyperspectral target detection», IEEE IGARSS, 2007 



Car 

Jacket 

• Urban background with high spectral complexity 

• A few controlled target objects 

• Target reflectance spectra are not taken from the image itself, but 
collected in an independent measurement of spectral reflectance 

Example: Detection in an urban scene 

RGB image extracted from spectral image 



• Using independently measured spectral signatures, 
most of the background can be suppressed 

• The blue car is detectable with only one falsely detected object 

• A green jacket is detectable with zero false alarm 

• Using a common detection threshold, each target class yields one 
falsely detected object 

Result from signature-specific detection 

Example: Detection in an urban scene 



Finally… 

• A few hyperspectral systems, image processing methods 
 

• By the way: 
– Masters student and Research Council project proposal 

«Combining Human and Machine Vision - a Multidisciplinary Approach» 
on appliying deep neural nets on hyperspectral image data 
together with MR-Physics Group, Dept. of Physics, NTNU 

– FFI is currently working with micro satellites,  
and optical systems meant for these 
 

• Good books: 



Reserve 



Detail images from each band: sharpness 
difference 

• Strong differences in focus between bands 
• Lens properties must be taken into account in image reconstruction 

Band 1, blue Band 2, green Band 3, yellow 

Band 4, red Band 5, NIR1 Band 6, NIR2 



PSF for all bands 

• Clear differences 
in degree of focus 
 

• Result of chromatic 
errors in lens 
 

• Can be exploited in 
image reconstruction 
 





Repeated sampling can overcome parallax 

• Point P can be correctly measured if 3D structure is known 

• Or, inconsistency can be detected in point P, data flagged as invalid 

• With more samples, additional correction strategies are possible 

B 
P 
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B 

Pos 1 

P 

Pos 2 

One sample per band Two samples per band 







Example: Combined  
signature-specific and anomaly detection 
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Signature-specific detection 
Estimating radiance from reflectance 
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The radiance signature measured 
 by a hyperspectral sensor: 

The radiance from reflected direct sunlight 
(if the target had been a 100% reflector) 

Signature-specific detection 
Estimating radiance from reflectance 



Signature-specific detection 
Estimating radiance from reflectance 
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The radiance from reflected skylight 
(if the target had been a 100% reflector) 



Signature-specific detection 
Estimating radiance from reflectance 
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The radiance signature measured 
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The radiance from reflected background illumination 
(if the target had been a 100% reflector) 



Signature-specific detection 
Estimating radiance from reflectance 
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Signature-specific detection 
Estimating radiance from reflectance 
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The radiance signature measured 
 by a hyperspectral sensor: 

The atmospheric transmission 



Signature-specific detection 
Estimating radiance from reflectance 
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The radiance signature measured 
 by a hyperspectral sensor: 

Radiance from up-welled skylight and the adjacency effect 



Signature-specific detection 
Estimating radiance from reflectance 
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The radiance signature measured 
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Sensor noise 



Example: Signature-specific detection 
with extreme signature variability 

Shadow (P3) Shadow (P4) Sun (P5) Sun (P6)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Site

Fa
ls

e 
al

ar
m

 ra
te

 (F
A

R
)

Green fabric (D)

 

 
PSSM
SBR
Healey-Slater
SBR
Anomaly

Shadow (P3) Shadow (P4) Sun (P5) Sun (P6)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Site

Fa
ls

e 
al

ar
m

 ra
te

 (F
A

R
)

Green net (G)

 

 
PSSM
SBR
Healey-Slater
SBR
Anomaly



Mål B D G T 

P3-B 0 2 13 0 

P4-B 3 0 20 0 

P5-B 43 0 2 0 

P6-B 34 0 6 0 

P3-D 0 26 4 0 

P4-D 0 23 0 0 

P5-D 0 31 0 0 

P6-D 0 39 0 0 

P3-G 0 0 40 0 

P4-G 0 12 12 0 

P5-G 0 0 114 0 

P6-G 0 0 75 0 

Sunlit T 0 0 0 9 

Example: Signature-specific classification 
with extreme signature variability 



Example: Combined  
signature-specific and anomaly detection 
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