
XQUEST used in Software Architecture Education 

 

Bian Wu 

Dept. of Computer and Information Science 

Norwegian University of Science and Technology 

Trondheim, Norway 

Bian@idi.ntnu.no 

 

Jan-Erik Strøm 

Dept. of Computer and Information Science 

Norwegian University of Science and Technology 

Trondheim, Norway 

Janerist@stud.ntnu.no 

 

Alf Inge Wang 

Dept. of Computer and Information Science 

Norwegian University of Science and Technology 

Trondheim, Norway 

Alfw@idi.ntnu.no 

 

Trond Blomholm Kvamme 

Dept. of Computer and Information Science 

Norwegian University of Science and Technology 

Trondheim, Norway 

trondblo@stud.ntnu.no 

 

 
Abstract— This paper describes motivation and application of a 

Microsoft XNA extended library- XQUEST (XNA QUick & Easy 

Starter Template) in a software architecture course, and further 

presents the evaluation of how well the XQUEST was to use in a 

software architecture course. XQUEST was designed and 

implemented to save students’ time in project development with 

flexible components. The evaluation was based on research 

methods and questionnaires from the students in the software 

architecture course. Finally, the questionnaires results were 

analyzed in three aspects: suitability, usefulness and usability. In 

many aspects, the results show that XQUEST enhances XNA in 

suitability as a teaching aid in software engineering learning, and 

that it can be a useful and helpful extension to understand XNA. 

The results also show that XQUEST is easy to use and save 

students time in development, thus giving students more time to 

focus on the practice of course theory. 

Keywords- XNA; Software architecture; Software engineering 

education; Evaluation 

I.  INTRODUCTION 

Research on games concept and game development used in 
higher education has been done before, e.g. [1, 2, 3], but we 
believe there is an untapped potential that needs to be explored 
due to development of new technologies. After some 
commercial SDKs have come out in recent years, such as XNA 
[6], iPhone SDK [19] or Android [20], we had considered how 
to use new technology and devices in the higher education to 
enrich the learning environment. This paper will focus on how 
to use a game development environment to teach software 
architecture or related courses. The motivation is to bring the 
same enthusiasm from playing games to learn to courses’ 
contents through game development. The specific features of a 
game SDK can give new insights and provide support for the 
educational process used in the teaching directly, providing an 
open platform for students during teaching. The games and 
game development frameworks can be integrated mainly in 
three ways with a university course. First, they can be used to 
replace traditional exercises. This approach would motivate 
students to put extra effort into exercises and give teachers 

and/or teaching assistants an opportunity to monitor how the 
students work with the exercises in real-time [22, 23]. Second, 
they can be integrated in lectures to improve the participation 
and motivation of students [24, 25]. The goal of proposed game 
concept is to prompt students and increase students’ attendance 
in lectures. Third, the students can use them in projects to 
develop software to understand the courses’ content related to 

software engineering or computer science [21, 26, 32].  

This paper focuses on the latter, where game development 
is used in student projects to learn software engineering skills. 
Concretely, we focus on one specific SDK--XNA and 
contribution is to extend XNA game libraries to improve it 
more suitable for higher education in two ways: shorten 
students’ development time, and improve the content and 
structure of XNA to fit certain course. Further, an evaluation 
and analysis of extension of XNA game libraries’ application is 

presented. 

The rest of the paper is organized as follows. Section 2 is 
an introduction of XNA and its application in software 
architecture course. Section 3 describes the XQUEST design 
and its structure. Section 4 describes an assessment of 
XQUEST application, Section 5 describes related work and 

Section 6 concludes the paper. 

II. XNA USED IN HIGHER EDUCATION 

This section is a detailed discussion of XNA structure and 
its application in a software engineering course at Norwegian 

University of Science and Technology (NTNU). 

A. XNA Structure  

XNA is a game development platform developed by 
Microsoft, which includes a programming framework and a set 
of tools to offer a complete game development package [4]. 
Based on the .NET platform, XNA offers game development 
for the PC, the Xbox 360, and more recently the Zune [5] 
media player. Further, XNA uses the C# programming 
language. XNA mainly targets students, hobbyists, and 



independent game developers. XNA is free to use, but to 
deploy games on the Xbox 360, a subscription to the XNA 
Creators Club [6] is required. XNA was motivated by an earlier 
attempt at bringing the DirectX C++ multimedia API [7] over 
to the .NET platform, called Managed DirectX [8]. It was 
essentially a 1:1 mapping of the DirectX API onto .NET. XNA 
took the idea one step further and provides a complete game 
development solution, not just the programming API. First 
released version 1.0 is in December 2006, the latest version of 

XNA is 3.0, released in October 2008[6].  

The overview architecture of XNA consisting of four layers 

is shown in Fig. 1.   

 

Figure 1. The Deployment View of XNA 

B. XNA used in Software Architecture Course  

The software architecture course is a post-graduate course 
offered to computer science and software engineering students 
at NTNU. The course is taught every spring based on the book 
Software Architecture in Practice [9], and its workload is 25% 
of one semester. In the software architecture course, 30% of the 
grade is based on an evaluation of a software architecture 
project all students have to do. The rest 70% is given from a 
written examination. The goal of the project is for the students 
to apply the methods and theory in the course to design 
software architecture and to implement a system based on 
XNA framework according to the architecture. The project 

consists of the following phases [32]:  

1) COTS (Commercial Off-The-Shelf) exercise: Learn the 

technology to be used through developing a simple 

application. 

2) Design pattern: Learn how to use and apply design 

pattern by making changes in an existing system. 

3) Requirements and architecture: List functional and 

quality requirements and design the software architecture for 

the application (a game). 

4) Architecture evaluation: Use the ATAM (Architecture 

Tradeoff Analysis Method) evaluation method to evaluate the 

software architecture of project in regards to the quality 

requirements. 

5) Implementation: Do a detailed design and implement 

the application based on the created architecture and on the 

changes from the evaluation. 

6) Project evaluation: Evaluate the project as a whole 

using a PMA (Post-Mortem Analysis) method [10]. 

The course staff issued the tasks to make a functioning 
game using XNA, based on students’ own defined game 
concept. However, the game had to be designed according to a 
specified and designed software architecture. Further, the 
students had to develop an architecture where they had to focus 
on one particular quality attribute. We used following 
definitions for the quality attributes in the game projects: 
Modifiability, the game architecture and implementation 
should be easy to change in order to add or modify 
functionality; and Testability, the game architecture and 
implementation should be easy to test in order to detect 
possible faults and failures. These two quality attributes also 

were related to the course content.  

III. MOTIVATION AND OVERVIEW OF XQUEST  

XQUEST (XNA QUick & Easy Starter Template) [11] is a 
small and lightweight 2D game library/game template 
developed by the two master students Strøm and Kvamme at 
NTNU (co-authors of this paper) that contains convenient 
game components, helper classes, and other classes that can be 
used in the XNA game projects. The goal of the XQUEST 
project was to identify and abstract common game 
programming tasks and create a set of components that could 
be used by students of the course to make their programming 
life easier. We chose to focus mainly on 2D. There were a few 
reasons for this. First, the focus of the student projects is 
software architecture, not making a game with fancy 3D 
graphics. Second, students unfamiliar with game programming 
and 3D programming may find it daunting to have to learn the 
concepts needed for doing full-blown 3D in XNA, such as 
shade programming and 3D-modelling, in addition to software 
architectures. To keep the projects in 2D may reduce the effect 
of students only focusing on the game development instead of 
focusing on the software architecture issues. However, we still 
consider to implement basic 3D components in XQUEST and 
help documentation for the students interested in 3D gaming 
programming, but it is not a mandatory for students to use 

them.    

A. Motivation for XQUEST  

From the feedback of using XNA in the software 
architecture course [21], the majority of the students thought 
there was much time focus on game issues and little time on 
software architecture, even the XNA environment is very 
developer friendly with a high level graphic API. Following 
Table I is a collection data from 46 students’ replies in software 

architecture course.  

Besides negative feedback above, from our teaching 
experiences we have to extend more features to improve XNA 

more suitable in the software architecture course:  

• Save time in C# learning and programming 

• Provide appropriate guidance and cases on mini 3D 

game programming. 

• Provide cases of good designed software architecture 

based on XNA and XQUEST.  

 

XNA Framework 

.NET Framework .NET Compact Framework 

XNA Game Studio 

 

Windows XBOX360 Zune 



 

TABLE I.  COLLECTION DATA ABOUT DEVELOPING TIME ON XNA FROM STUDENTS 

Question 
Strongly 

disagree 
Disagree Neutral Agree 

Strongly 

agree 

Q: I spent too much time developing the game play 

and not enough time on the architecture 
5% 30% 10% 40% 15% 

    
• Provide some documentation to explain the trade-off 

between architecture design and COTS, especially 

XQUEST components.   

B. Design Principles for XQUEST  

Here were the general principles used to design XQUEST:  

1) Flexible structure: Due to XQUEST is used for 

teaching software architecture, and students will design game  

projects based on suitable software architectures like Model-

View-Controller, Pipe and filter, Layered, Task Control and 

etc., we tried to provide flexible components for the students 

that would not hinder the students to design their own 

software architecture. 

2) Easier to use: From our teaching experiences, 90% 

students had programming skills in Java, but not in C#. 

XQUEST would help them to learn XNA in an easy and quick 

way with good comments on code and supported 

documentation. And XQUEST was based on XNA and it 

would be easier for students to use and save development 

time. Students could learn it quickly even they only had 

experience in Java programming. 

3) 3D guidance: We intended to lead students into the 

world of 3D, and gave them the basic ideas of 3D 

programming. But 3D programming needs more time on 3D 

models and some basic 3D transformations to 2D on screen. 

We used several demos in XQUEST to show some 3D 

technologies and gave the students some sensorial 3D 

concepts in mind and got a quick entrance into the 3D world. 

Thus, they did not need to know the Math basics of how to do 

3D transformations into 2D.  

4) Providing tutorials to investigate the software 

architecture in game: Very little reference had been published 

on the subject of software architecture in game development, 

although some attempts had been done [12, 13, 14]. However, 

these attempts failed to deliver a general high-level 

presentation of software architecture topics, and tended to 

focus more on the design and implementation of software 

modules that were common in games. We looked into the 

differences between traditional software development and 

game development, as well as identifying different 

architectural and design patterns that were useful for game 

development. Also, portraying the challenges of designing and 

implementing game architectures could be proved useful for 

determining the scope of such an endeavor.  

5) Reflect the quality attributes in a game architecture: 

Quality attributes were the driving force behind every big 

decision in the development process, and had to be considered 

at all times. We identified some quality attributes that were 

most relevant for game development, such as modifiability, 

testability, availability or usability. We would look at 

structures and patterns that underline certain quality attributes, 

and to use these elements in a game architecture.     

C. XQUEST Structures and Components  

The XQUEST library would be presented component by 
component. XQUEST functionality was split into eight 
components. Their relationships could be found in Fig. 2, and 
we put the XQUEST.GameObjectManagement component in 
the middle purposely to indicate its importance. It contains the 

game object system, which is at the heart of XQUEST.  

Here is a brief description of each component.  

1) XQUEST.GameObjectManagement contains the game 

object system, responsible for handling game objects such as 

players, enemies, power ups, etc. The object system allows for 

many different types of objects, 2D or 3D, and provides state 

tracking and a flexible collision detection system. 

2) XQUEST.CameraSystem provides functionality for 

setting up both 2D and 3D cameras to view a scene or track 

game objects in multiple perspectives. 

3) XQUEST.GameStateManagement handles state and 

state transitions in the game. It uses the concept of game 

screens. A game screen can be a menu screen, an inventory 

screen, a combat screen, etc. 

4) XQUEST.Audio handles audio-related functionality like 

playback of sound effects and music, adjustment of volume 

levels, grouping into categories, etc. 

5) XQUEST.Misc contains miscellaneous components of 

utility that do not fit into any other namespace. 

6) XQUEST.Input handles querying and interpretation of 

keyboard, mouse, and Xbox 360 game pad input. 

7) XQUEST.Helpers contains convenient helper classes 

for common tasks.  
Besides of above components, we also provided some 

demos and directions to illustrate how to use these components, 
what kind of architecture used in one demo and what types of 

attributes (Modifiability, testability or others) does it focus on. 

IV. EVALUATION OF XQUEST USED IN A SOFTWARE 

ARCHITECTURE COURSE 

One goal of this paper was to investigate the XQUEST’s 
application results in software architecture course. Concretely, 

we investigated the following research questions: 

• RQ1: What is the usability of XQUEST? 

 



 

 
 

Figure 2. Structure View of XQUEST 

 

• RQ2: What is the suitability and usefulness of 

XQUEST?   

• RQ3: What is the usefulness of the specific 

components in XQUEST?   

• RQ4: What other positive or negative issues are related 

to XQUEST?  

A. Preparation for Evaluation  

In this part, we present our research methods and students’ 

background during the evaluation process. 

1) The research methods: 

a) System Usability Scale: The System Usability Scale 

[17], hereafter SUS, is a usability questionnaire consisting of 

ten generic Likert items. Responses to the questionnaire result 

in a score, called the SUS score, a single number between 0 

and 100 indicating the overall usability of the system being 

studied. The SUS is used for subjectively measuring usability 

of a system on a high level. The outcome of a SUS 

questionnaire is a score within the range of 0 to 100, where 

higher values indicate a higher measured usability of the 

system. Each item in the SUS is responded to by assigning a 

scale value from 1 to 5, where 1 indicates strong disagreement 

and 5 indicates strong agreement. To calculate the SUS score, 

we first sum together the score contributions for each 

question. Each question’s score contribution is a number in the 

range 0 to 4. There are totally 10 questions, for odd-numbered 

questions (1, 3, 5, 7, 9), the score contribution is given by the 

scale position minus 1. For even-numbered questions (2, 4, 6, 

8, 10), the score contribution is 5 minus the scale position. The 

sum of the score contributions are then multiplied by 2.5 and 

divided by the number of replies to the survey to obtain the 

final SUS score. We had incorporated the SUS items in our 

XQUEST questionnaire. 

b) Empirical investigation: The survey was based on the 

method of conducting an empirical investigation [15]. We had 

applied recognized methods combined with our own 

subjective assessments to implement the survey.  Measureable 

items in the questionnaires had been formed as Likert [16] 

items. These were not questions, but statements that the 

respondents responded to by specifying their agreement to the 

statements. We had used 5-level Likert items, where the levels 

of agreement were: Strongly Disagree; Disagree; Neutral; 

Agree and Strongly Agree. The items from the questionnaires 

were assessed subjectively. And these subjective analyses 

were based on our teaching experiences.  

2) The participants and Environments.  
The participants of our survey were postgraduate students 

of the software architecture class spring 2008 at NTNU. They 
used an online e-learning platform during the course. The 
questionnaires were published three days after the delivery 
deadline of students’ projects on the e-learning platform by 
using its survey functionality. Each question was prefixed with 
a context name indicating which section it belonged to. The 
participants and environment was authentic in the sense that the 
students of the course were the intended users of XNA and 

XQUEST.   

B. Results from System Usability Scale (SUS) Questions 

Here we present the results from the SUS part of the 

XQUEST questionnaire.  

The result of SUS score is shown in Table II. Our system 
achieved a score of 60.53 out of a possible 100 and it is above 
the average usability, which indicates that the system is not 
difficult to use. The main challenge for some students was to 
spend much time on becoming familiar with 2D/3D structure in 
XQUEST. This process can be improved by giving an 
introduction lecture about 2D/3D concept after first simple 
exercise when the students had already setup some experiences 
and context of XNA programming environment. We also need 
to improve 2D/3D components into two separate components 

in next XQUEST version. 

XQUEST. 

GameObjectManagement 
 

XQUEST.Input 

 
XQUEST.Misc 

 
XQUEST.SpriteAnimation 

 
XQUEST.CameraSystem 

XQUEST. 
GameStateManagement 

XQUEST. 
Audio 

 
XQUEST.Helpers 



C. Results from Suitability and Usefulness Questions 

The results from the questions about suitability and 
usefulness of XQUEST are shown in Table III. This 
questionnaire was only for students using both XNA and 
XQUEST in project.  We received a total of 19 responses from 
the students using XQUEST out of the 46 students that worked 

on an XNA game project. 

From the investigation, it showed that students could use 
XQUEST as a template or referencing it as a library, 40% 
modified the code of XQUEST and 30% kept it unchanged. 
This reflects of one successful design philosophy of XQUEST 
was to create it as abstract and reusable as possible, students 

could chose any ways that help the project design.  

Q2 shows a positive result that XQUEST prepared most 
commonly used components for students and it saves the time 

in game development.  

And we found 60% students disagreed that they spent too 
much time looking into the source code of XQUEST. This 
positive result indicates our good documentation work and self-
explanatory public interfaces and we also thanks to Visual 
Studio greatly benefits source code commenting in that these 
comments show up on the IntelliSense [18] tooltips that pop up 
while the programmer is typing in code. For example, when 
creating a new instance of a class, the IntelliSense will display 
any comments available for the different parameters that the 

constructor accepts.  

It is also inevasible that students should both focus on 
architectural matters and on technical matters, but from Q4 
result, to a certain extent, XQUEST still could help one third 

students more on architectural matters than on technical matter. 

D. Results from Usefulness of Every Component Questions 

From Table IV result, we could find out how the students 
used XQUEST in their projects, every components value and 

where we should focus on the improvement. 

As we expected, the most popular component was the 
Animated Sprite Framework. Since all groups worked on 2D 
games, this is understandable since sprite rendering is the 
easiest way to output graphics in a 2D environment. Another 
popular component was the Game Object Management 
component. When going through the XNA deliveries, we were 
surprised to find out that most groups did not create their own 
implementation of the IGameObject interface, but rather used 
the standard BasicGameObject. Using BasicGameObject has 
some limits, because it is tightly interwoven with the Sprite 
Animation Framework for representing the game object using 
sprites. This implies that groups that used this approach, also 
needed to use the Sprite Animation Framework. Looking at the 
high percentage of students who responded to have used both 
of these components, there is no doubt that the use of 
BasicGameObject is the main reason for this. So this is the 

point that reminds the students to pay attention during teaching. 

In third place comes the InputManager component. This is 
probably the most useful component in XQUEST, since every 
game needs to handle input in some forms. It contains several 
methods for supporting all the XNA input devices such as 

keyboard, mouse, and up to four Xbox 360 game pads. By 
looking at the deliveries, we found that most games were 
single-player games played with a keyboard, or hot seat 
multiplayer games where all players shared the same keyboard. 
Some games used the mouse as the primary input device, but 
very few implemented game pad support, since they did not 
have access to Xbox 360 game pads during the project unless 
they brought one themselves. The input needs may therefore 
have not been so great that it required a component like the 
InputManager. We will therefore simplify the functions in 
InputManager component to minimize the amount of code the 
students needs to read to save total time of code reading, such 
as delete input support for XBOX360 according to the practical 

application from students. 

The least used components were the AudioManager and 
TextOut components. Having music and sound effects in your 
game may not take the greatest priority in a school project 
where the evaluation criteria leans more towards software 
architecture and fulfilling an assigned quality attribute. For this 
reason, many groups decided not to implement audio features 
in their games to save development time, and hence no need for 
the AudioManager component. Still, almost half of the games 
used this component. The TextOut component was a 
component we thought would be more popular. It is really 
simple to use, and has features that makes it very convenient 
for text display. It may be the fact that text display is so simple 
that the students did not see the need for using it. The standard 
way of displaying text with SpriteBatch may fulfill all the 
desired text rendering needs. In this way, we could also cut 

some functions in TextOut to save coding read workload. 

E. Open Questions Analysis 

Table V is the collection of main feedback from students to 
the open question. 20% of the students agreed that some 
components were missing in XQUEST. Pixel-perfect collision 
detection is a very performance-intensive operation that we 
described as not suitable for a multi-purpose game object 
system such as the one in XQUEST. However, we decided to 
include support for it in next XQUEST version. It is disabled 
by default, but can be enabled on a per-object basis, meaning 
the user is in total control of how the collision detection should 

be executed for every object in the scene. 

BasicGameObject is definition not supposed to be flexible. 
The flexibility of the game object management system in 
XQUEST lies in the IGameObject interface, of which 
BasicGameObject is an implementation. As expressed above, 
we were surprised that so few groups did not take advantage of 
this flexibility by providing their own implementation of the 
IGameObject interface. By doing so, they could have tailored it 
for their game. Instead, they chose to use the standard  
implementation in BasicGameObject, which of course also 
constrained them to using the Sprite class for the graphical 

representation. 

 

 



TABLE II.  RESULTS FROM THE SUS 

Question 
Sum score contribution 

of 19 students 

1 I think that I would like to use this system frequently. 35 

2 I found the system unnecessarily complex. 52 

3 I thought the system was easy to use. 50 

4 I think that I would need the support of a technical person to be able to use this system. 55 

5 I found the various functions in this system were well integrated. 47 

6 I thought there was too much inconsistency in this system. 48 

7 I would imagine that most people would learn to use this system very quickly. 44 

8 I found the system very cumbersome to use. 45 

9 I felt very confident using the system. 40 

10 I needed to learn a lot of things before I could get going with this system. 44 

Sum: 460 

SUS Score:  460 * 2.5 / 19 = 60.53 

TABLE III.  THE 5 GENERAL QUESTIONS LABELED Q1-Q5 

Question 
Strongly 

disagree 
Disagree Neutral Agree 

Strongly 

Agree 

Q1: I found that I could use XQUEST as is 

without modifications 
15% 25% 30% 25% 5% 

Q2: I think XQUEST saved me a lot of time 

and effort by providing components and 

functionality that I otherwise would have had 

to create myself 

10% 10% 15% 40% 25% 

Q3: I spent too much time looking into the 

XQUEST source code 
10% 50% 25% 15% 0 

Q4: I think XQUEST helped me focus more 

on architectural matters and less on technical 

matters 

5% 35% 30% 30% 0 

TABLE IV.  QUESTIONS ABOUT EVERY COMPONENT IN XQUEST 

# I used the following components of XQUEST 

Component 
Sprite/ 

AnimatedSprite 

GameObject 

Manager 
InputManager 

Percentage 90% 85% 75% 

Component TextureStore AudioManager TextOut 

Percentage 65% 40% 30% 

TABLE V.  OPEN QUESTION COLLECTION 

Question 
Strongly 

disagree 
Disagree Neutral Agree 

Strongly 

agree 

Q: I think there were components missing that 

most students could benefit from 
0 25% 55% 10% 10% 

Q: If you felt there were components missing, which ones would you like to see in a future version of 

XQUEST? 

A1. Sprite layers and pixel collision detection. 

A2. Pixel-based collision detection, system for being called with certain intervals, better modifiability. 

A3. More flexible BasicGameObject, allowing non-sprite objects. 

  

V. RELATED WORK 

This paper described experiences how to improve and 
enhance the XNA teaching functions in a software architecture 
course. As far as we know, XNA is always directly used in 
education, there are only few papers describe its application in 
education and no paper goes further to describe the idea to 
extend the XNA’s structure to enhance its features as a 
teaching aid for certain course. However, there are some 

related approaches used in education described in this section. 

Joe Linhoff describes a game development course that uses 
the XNA platform to allow a heterogeneous group of students 

to gain experience in all aspects of console game creation [31]. 
It uses the features of XNA directly for the teaching, such as 
Pipeline or console that could be XBOX360 to activate 

students’ programming interesting. 

Youngblood describes how XNA game segments can be 
used to engage students in advanced computer science 
education [27]. Game segments are developed backs providing 
the full code for a segment of a game with a clear element left 
for implementation by a student. The paper describes how 
XNA was used in a artificial intelligence course where the 
students was asked to implement a chat bot, motion planning, 
adversarial search, neural networks and flocking. Finally the 



paper describes seven design principles for using game 

segments in CS education based on lessons learned. 

Oliver Denninger and Jochen Schimmel present their 
experiences utilizing game programming for project courses 
based on XNA [30]. Game programming usually involves 
many repetitive and time consuming tasks such as accessing 
hardware resources and managing game content, but since 
XNA framework relieves programmers from many of the 
tedious tasks and allows them to develop a feature complete 
game and to gain experience with the process of software 
development, students were so fascinated by the subject that 

they prefer to spent more time on the courses. 

El-Nasr and Smith describes how the use of modifying or 
modding existing games can be used to learn computer science, 
mathematics, physics and ascetic principles [26]. The paper 
describes how they used modding of the WarCraft III engine to 
teach high school students a class on game design and 
programming. Further, the describe experiences from teaching 
university students a more advanced class on game design and 
programming using the Unreal Tournament 2003 engine. 
Finally, they present observations from student projects that 
involve modding of game engines. Although the paper claims 
to teach students other things than pure game design and 
programming, the game engine is used in the context of game 

development courses. 

The Labyrinth [28] was implemented in Java and it is a 
flexible and easy-to-use computer game framework. The 
framework enables instructors to expose students to very 
specific aspects of computer science courses. The framework is 
a finished game in the Pac-Man genre, highly modular, and it 
lets the students change different aspects of the game. 
However, it cannot be used to develop different genres of game 
and there is little room for changing the software architecture 

of the framework. 

The JIG (Java Instructional Gaming) project [29] is a 
collaborative effort between Scott Wallace (Washington State 
University Vancouver) and Andrew Nierman (University of 
Puget Sound) in conjunction with a small group of dedicated 
students. It has three aims: 1) to build a Java instructional game 
engine suitable for a wide variety of students at all levels in the 
curriculum; 2) to create a set of educational resources to 
support the use of the game engine at small, resource-limited, 
schools; and 3) to develop a community of educators that use 
and help improve these resources. The JIG project was 

proposed in 2006 and the JIG engine 1.0 is available now. 

VI. CONCLUSIONS AND FUTURE WORK    

In this paper, we have presented the principles to design 
XQUEST to improve XNA teaching functions for students in 
the exercise of the software architecture course. Furthermore, 
we evaluated the XQUEST application and analyzed several 
aspects of XQUEST’s suitability, usefulness and usability 
based on questionnaires.  In many aspects, the results show that 
XQUEST enhances XNA in suitability as a teaching aid in 
software engineering learning, and that it can be a useful and 
helpful extension to understand XNA. The results also show 
that it is easy to use and save students time in development, and 

let students have more time to focus on the practice of course 

theory. 

Due to the first time using XQUEST in the software 
architecture course, from our experiences and evaluations, 
more works need to be done in improving the components in 
XQUEST to make them more useful, and updating the 
documentation due to updated XNA versions. We will go 
further to extend game library and enriching help resources of 

XQUEST in 3D development. 

ACKNOWLEDGMENT 

We would like to thank Jan-Erik Strøm and Trond 
Blomholm Kvamme for implementing XQUEST and for their 
inputs to this paper. This work has been sponsored by the Leiv 
Eriksson mobility program offered by the Research Council of 

Norway. 

REFERENCES 

[1] Alex Baker, Emily Oh Navarro, and André van der Hoek. Problems and 

Programmers: an Educational Software Engineering Card Game. In 
ICSE ’03: Proceedings of the 25th International Conference on Software 

Engineering, pages 614–619,Washington, DC, USA, 2003. IEEE 
Computer Society. 

[2] Emily Oh Navarro and André van der Hoek. SimSE: an Educational 
Simulation Game for Teaching the Software Engineering Process. In 

ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on 
Innovation and technology in computer science education, pages 233–

233, New York, NY, USA, 2004. ACM Press. 

[3] Lasse Natvig, Steinar Line, and Asbjørn Djupdal. Age of Computers: An 
Innovative Combination of History and Computer Game Elements for 

Teaching Computer Fundamentals. In FIE 2004: Proceedings of the 
2004 Frontiers in Education Conference, 2004. 

[4] N. Landry, "Microsoft XNA: Ready for Prime Time?," in CoDe 

Magazine. vol. Sept/Oct, 2007. 

[5] Microsoft; "Zune.net", http://www.zune.net/. Retrieved April 24, 2008. 

[6] Microsoft; "XNA Creators Club Online", http://creators.xna.com/. 
Retrieved May 21, 2008. 

[7] F. Luna, Introduction to 3d Game Programming with Direct X 9.0c. 

Plano: Wordware Publishing, Inc, 2006. 

[8] T. Miller, "Managed DirectX 9 Graphics and Game Programming," 

Sams Publishing, 2004. 

[9] P. Clements L. Bass and R. Kazman. Software Architecture in Practice 
Second Edition, 2003. Addison-Wesley. 

[10] A. I. Wang, T. Stålhane.  Using Post Mortem Analysis to Evaluate 

Software Architecture Student Projects ,  Conference on Software 
Engineering and Training 2005, 8 pages. 

[11] Trond Blomholm Kvamme and Jan-Erik Strøm, “Evaluation and 

Extension of an XNA Game Library used in Software Architecture 
Projects”, Master thesis in NTNU, June 2008. 

[12] A. Rollings and D. Morris, Game Architecture and Design, 2 ed.: New 

Riders Publishing, 2003. 

[13] D. Eberly, 3d Game Engine Architecture. Amsterdam: Morgan Kaufman 
Publishers, 2005. 

[14] R. Rucker, Software Engineering and Computer Games. Boston: 
Addison-Wesley, 2003. 

[15] V. R. Basili, "The Experimental Paradigm in Software Engineering," in 

Dagstuhl Workshop. vol. Experimental Software Engineering Issues: 
Critical Assessment and Future Directives, H. D. Rombach, V. R. Basili, 

and R. W. Selby, Eds. Dagstuhl Castle, Germany: Springer-Verlag, 
1992, pp. 3-12. 

[16] Microsoft, "Shader Series Primer: Fundamentals of the Programmable 

Pipeline in XNA Game Studio Express," 2007. 
http://creators.xna.com/downloads/?id=128 



[17]  J. Brooke, "SUS - A quick and dirty usability scale," in Usability 

Evaluation in Industry London: Taylor and Francis, pp. 189-194. 

[18]  Wikipedia; "IntelliSense", 

http://en.wikipedia.org/w/index.php?title=IntelliSense&oldid=20872008
9. Retrieved May 7, 2008. 

[19] Apple. “iPhone Dev Center”, http://developer.apple.com/iphone/, 

Retrieved February 2, 2009. 

[20] Google. “Android - An Open Handset Alliance Project”, 
http://code.google.com/intl/en/android/documentation.html. Retrieved 

February 2, 2008. 

[21] Bian Wu, Alf Inge Wang, Jan-Erik Strøm, Trond Blomholm Kvamme, 
"An Evaluation of Using a Game Development Framework in Higher 

Education," CSEET, pp.41-44, 2009 22nd Conference on Software 
Engineering Education and Training, 2009  

[22] G. Sindre, L. Nattvig, M. Jahre, “Experimental Validation of the 

Learning Effect for a Pedagogical Game on Computer Fundamentals”, 
to appear in IEEE Transaction on Education. 

[23] B.A. Foss and T.I. Eikaas, “Game play in Engineering Education - 

Concept and Experimental Results”, The International Journal of 
Engineering Education 22(5), 2006. 

[24] A. I. Wang, O. K. Mørch-Storstein, T. Øfsdahl, “Lecture quiz - a mobile 
game concept for lectures”, The 11th IASTED International Conference 

on Software Engineering and Application (SEA 2007), November 19-
21, 2007. 

[25] A. I. Wang, T. Ø. and O. K. Mørch-Storstein: “An Evaluation of a 

Mobile Game Concept for Lectures”, 21st IEEE-CS Conference on 

Software Engineering Education and Training (CSEE&T 2008), 

Charleston, S. Carolina, USA, April 14-17, 2008,. 

[26] M. S. El-Nasr and B. K. Smith, “Learning through game modding”, 

ACM Computer Entertainment 4(1), Jan. 2006. 

[27] Youngblood, G. M. 2007 Using XNA-GSE Game Segments to Engage 
Students in Advanced Computer Science Education. In The 2nd Annual 

Microsoft Academic Days Conference on Game Development, February 
22-25. 

[28] Distasio, J. and Way, T. 2007 Inclusive computer science education 

using a ready-made computer game framework. In ITiCSE '07: 
Proceedings of the 12th annual SIGCSE conference on Innovation and 

technology in computer science education, 116-120. 

[29] Washington State University Vancouver and University of Puget Sound. 
2008 The Java Instructional Gaming Project. Web: 

http://ai.vancouver.wsu.edu/jig/, Retrieved June 2008. 

[30] Oliver Denninger, Jochen Schimmel, Game Programming and XNA in 
Software Engineering Education, Proceedings of Computer Games and 

Allied Technology (CGAT08), 2008. 

[31] Joe, L. and S. Amber (2008). Teaching game programming using XNA. 
Proceedings of the 13th annual conference on Innovation and technology 

in computer science education. Madrid, Spain, ACM. 

[32] Wang, Alf Inge; Wu, Bian. An Application of a Game Development 

Framework in Higher Education. International Journal of Computer 
Games Technology 2009 ;Volume 2009. 

 

 


