
Issues related to Development of Wireless Peer-to-Peer Games in J2ME

Alf Inge Wang
Dept. of Computer and Information Science

Norwegian University of Science and Technology
N-7491 Trondheim, Norway, alfw@idi.ntnu.no

Michael Sars Norum
BearingPoint Norway AS
N-0051 Oslo, Norway

michael.norum@bearingpoint.com

Carl-Henrik Wolf Lund
Bekk Consulting AS
N-0102 Oslo, Norway

Carl-Henrik.Lund@bekk.no

Abstract

This paper describes and discusses challenges related

to development of peer-to-peer games in J2ME using the

available Bluetooth API (JSR82). By using Bluetooth on

wireless devices, new types of personal network peer-to-

peer games can be developed. In this paper, we present

a classification framework for wireless peer-to-peer games

that divides types of games into two different dimensions.

The first dimension groups games according to the user in-

teraction patterns and the second dimension groups games

according to how data is updated. Further, the paper in-

vestigates problems that must be solved before peer-to-peer

games using the existing Bluetooth API in J2ME can be de-

veloped. Here issues related to the Bluetooth API and lim-

itations in the Bluetooth standard are discussed. Finally,

the classification framework is used to reveal what types of

games that can be implemented using current J2ME virtual

machines and current Bluetooth API. The results presented

in this paper are based on experiences from development

of cooperative peer-to-peer applications for mobile phones

using a framework called Peer2ME.

Keywords: Peer-to-peer games, Bluetooth, J2ME,

JSR82

1 Introduction

Computer games played on consoles or PCs have be-

come one of the most successful type of commercial ap-

plications, and is today one of the biggest branches in the

entertainment industry. As mobile devices have become

more and more powerful with improved colour screens and

graphics, the game industry has started to focus on game

development for mobile and wireless devices. It is expected

that by 2006, wireless gaming will generate $17.5 billion in

annual revenue worldwide [7]. The development of games

for wireless devices brings new challenges to the devel-

oper, such as minimizing game data, make games for small

screens, adjust the control of games to fit the keypad on

wireless devices etc. [3]. Today, most mobile phones have

support for running J2ME applications. In an ideal world,

this would solve all portability issues of creating games for

various devices. However, this is not the case. In prac-

tise, game developers using J2ME must handle variations

in screen sizes, colour depths, audio features, and varia-

tion in how the virtual machine is implemented on differ-

ent devices supporting different APIs that can be manufac-

turer independent or dependent. However, there are also

benefits from using J2ME when developing wireless games.

J2ME applications are packed in a standardised way mak-

ing it easy to buy and install games on the wireless devices

using over-the-air provision. It is even possible to use active

network support (active WAP) to deploy J2ME games [8].

Today, most PC and console games support network

gaming. For mobile games, this is not the case and es-

pecially for J2ME games. There are examples of J2ME

games using the network for storing high-scores and game

statistics, but also some games that focus on interactions

between users like Samurai Romanesque [6]. In this pa-

per, we have looked at the opportunity of development of

peer-to-peer games in J2ME, and the challenges we face in

doing so. There are examples of simple peer-to-peer games

in J2ME today like chess and monopoly, but few of them

are commercial. Through our experiences in development

of peer-to-peer applications in J2ME, we want to investi-

gate whether the Bluetooth API in J2ME and the J2ME

technology is mature enough to create peer-to-peer games

for wireless devices. In the work of evaluating the peer-

to-peer gaming, we have created a classification of peer-to-

peer games that we use in the evaluation. The results pre-

sented in this paper are based on experiences from develop-

ing peer-to-peer applications using the Peer2ME framework

[9].

The paper is organised as follows. Section 2 de-

scribes our classification framework that divides peer-to-

peer games into different types depending on user interac-

tion pattern and how data is updated. Section 3 describes

general issues that must be taking into account when devel-

oping games using the Bluetooth API in J2ME. Section 4

investigates how well the different types of games grouped

according to our classification framework can be supported

using J2ME and the Bluetooth API. Section 5 describes re-

lated work in the area of J2ME and Bluetooth. Section 6

concludes the paper.

2 Classification Framework for Mobile Peer-

to-peer Games

In this section, we present a classification framework for

mobile games that divides games into categories according

to their characteristics and behaviour in a peer-to-peer en-

vironment. The motivation for creating the classification

framework was twofold. First, we wanted to identify the

various types of peer-to-peer games to examine their char-

acteristics. Second, we wanted to investigate how the var-

ious categories of mobile peer-to-peer games could be im-

plemented using J2ME and the Java Bluetooth API. For the

latter, the classification framework would make it easier to

focus on specific usages of the peer-to-peer network.

The usual way of classifying games is to divide games

into genres that reflect the game experience or gameplay.

An example of such a classification is to divide games

into the following categories: Action, adventure, driving,

puzzle, role-playing, simulation, sports, and strategy [2].

Such classifications are commonly used by game maga-

zines, game shops and game web sites to make it easier

for the reader to focus on his preferred type of games. In

this paper, we suggest another classification that is not in-

tended to replace the existing genre classification, but rather

to provide a classification that can group games according

how network users interact and how the peer-to-peer net-

work is used in the games. The classification is inspired by

work within the mobile computer supported collaborative

work (mobile CSCW) domain.

Mobile CSCW can be defined as: ”Working together at

various sites with the use of mobile IT” [12]. In other words,

mobile CSCW is to run CSCW applications on mobile de-

vices like mobile phones that operate in a wireless, mobile

environment. To run CSCW applications on mobile devices

can be a challenge due to limited CPU power, small screens,

limited input devices and limited power source (battery).

Mobile CSCW has also some advantages compared to tra-

ditional CSCW. Mobile devices (mobile phones) are highly

personal and most users carry their devices with them all

the time. This means that the device can be used to iden-

tify the user. Also, since the device is personal, a user will

typically store a personal profile on the device, enabling the

device to function according to the user preferences when

interacting with other users. Mobile devices can also be

considered to always be connected to a network (cellular

network), giving a high availability rate of the users. This

is not the case for wireless peer-to-peer applications, since

they use personal area networks like Bluetooth, infrared or

WLAN. Interaction in such networks is dependent of the

users to be geographically collocated (e.g. within a 10 me-

ter radius) and the interaction between the users is highly

dynamic. Proximity-based ad hoc interaction, enabled by

mobile phones and personal area networks, is referred to as

impromptu collaboration [4]. Impromptu collaboration is

recognisable as being opportunistic, the technology enables

people to take advantage of opportunities that present them-

selves; spontaneous, the collaboration effort is not planned

in any way in advance; proximity based, the peers have

to be physically collocated; and transient, the interaction

between peers can be very short, e.g. a few minutes or

seconds. Game sessions for games using ad-hoc peer-to-

peer networks are generally shorter than e.g. console game

sessions, but lasts at least a couple of minutes. There are

several reasons the mobile peer-to-peer game sessions are

generally shorter than standard gaming sessions. First, the

gamers are generally on the move and typically play games

while waiting for something else to happen. Second, the en-

ergy consumption of playing network games on mobile de-

vices will limit the length of the session. Finally, the smaller

screens and limited input devices will cause the gamer to get

more easily tired.

Impromptu collaboration can involve different degrees

of user interaction from situations where the device will do

all the interaction on behalf of the users, to situations where

the user actively interacts with nearby users. Further, the

update frequency of the data sent between users is an impor-

tant aspect of mobile peer-to-peer gaming. Based on these

two facts, we have developed a peer-to-peer game classifi-

cation framework consisting of two dimensions. The first

dimension describes how the users interact and to what de-

gree the devices interact on behalf of the user. User interac-

tion of peer-to-peer games can be divided into the following

categories:

I1 Controlled: In this category, the user interactions of

the gamers are controlled through a well-defined pro-

tocol, where one of the peers in the network must be

a master controlling the user interaction. For games in

this category, it is not up to the gamer themselves when

to interact, since the master peer controls the interac-

tion. This category suits well games that are turn-based

or games where the users must interact in specific pat-

terns or sequences. This category also covers games

where all the users must follow a specific pattern or

route (e.g. driving games).

I2 User interaction: In this category, the users have ex-

plicitly to trigger actions that will cause interaction

(exchange of data) with other gamers. This category

suits well games that include trading of e.g. weapons,

equipment and other items between gamers. In addi-

tion, this category covers games where it is up to the

gamer how he wants to interact with the other gamers.

I3 Automatic triggered: In this category, the mobile de-

vice of a gamer searches for other gamers nearby, and

if one is found it can trigger an action to get the gamers

attention (sound or vibration). An example with such

functionality is included in the game Nintendogs for

Nintendo DS [10]. This game has a bark mode where

your virtual dog in the game will start to bark if another

player also in bark mode is within wireless range. The

players can then interact and let their virtual dogs meet.

I4 Automatic: In this category, the devices of the gamers

interact without the user interacting with the game it-

self. In this category, the gamers typically config-

ure and build autonomous characters that can interact

with other users characters on behalf of their ”owners”.

Such games can e.g. be role-playing games, where the

gamer equip and train his characters, and the fighting

between network gamers goes on without the gamers

interacting.

As we can see from the description above, the first dimen-

sion assesses the interaction among the peers and to what

degree the application can operate autonomously. The sec-

ond dimension of the classification framework focuses on

synchronisation and update of data between the peers. This

dimension is divided into three categories:

U1 Asynchronous: Asynchronous update is for network

games where update between the peers is not time crit-

ical, but can be updated whenever possible. This cate-

gory fits best games that are ”slow-paced” and do need

fresh data to proceed in the game.

U2 Synchronous: In this category, the peers participating

are depending on frequent update of data to be able to

play the game. Further, for this category only small

amount of information is necessary to be sent between

the peers to keep the gamers in a consistent state. Such

information can typically be game scores, lap-times,

ranking, simple player states etc.

U3 Real-time: In this category, the games rely on heavy

data exchange between peers in order to give users a

game experience. The data exchange between peers

can typically be position of character or a vehicle in a

common world or track, state of character or vehicle,

movements of character or vehicle etc.

As seen above, the second dimension identifies the

amount network traffic between the peers, and whether the

network is used all the time or only in intervals. Most per-

sonal area networks can cope with the U1 and U2 cate-

gories, but not necessarily U3 depending on the amount of

data required to be sent between the peers. Another aspect

of the U3 category is that the network lag must be min-

imised to avoid the game experience to stutter.

In Table 1, we have mapped various game genres that can

fit into the different categories of the classification frame-

work. Note that many games will span over many cate-

gories and will contain multiple aspects of the framework.

As we can see from the classification framework, the dif-

ferent game genres can span over various categories. Also

the same game can have elements of several categories.

The classification framework can also be applied to anal-

yse single games to assess the peer-to-peer characteristics

of the game. As an example, the Nintendogs game for the

Nintendo DS would fit into the following categories in the

framework: (U2, I3) for bark mode, (U2, I4) for when net-

work players let their dogs interact on their own, and (U2,

I2) when network players control their dogs when interact-

ing.

In the Section 4, we will investigate issues related to de-

velopment of games in the different categories identified in

this section using J2ME and the Java Bluetooth API.

3 Games, Bluetooth and J2ME

In this section we will look at issues that must be solved

in order to develop peer-to-peer games using the Java Blue-

tooth API (JSR-82) in J2ME. The issues presented in this

section are based on experiences from developing various

peer-to-peer applications in J2ME.

3.1 Slow Device Discovery

The goal of the device discovery process in Bluetooth

is to find all surrounding Bluetooth devices within the net-

work range. After all devices have been found, the devices

start to handshake and connect. We have conducted tests on

three different mobile phones (Sony Ericsson P900, Nokia

6600 and Siemens S65) to measure the time to carry out a

Bluetooth discovery and the handshake protocol. To check

if there were differences between the three devices, we con-

ducted 10 tests for three different configurations (in total 30

tests) where we found that the total time for discovery and

handshake varied from 18.3 seconds to 25.4 seconds. The

Update/User interaction I1 Controlled I2 User interaction I3 Automatic triggered I4 Automatic

U1 Asynchronous puzzle, strategy strategy, RPG

U2 Synchronous simulation, sport simulation, adventure simulation RPG, simulation

U3 Real-time driving, sport action, adventure action

Table 1. The P2P Game Classification Matrix

Device configuration Bluetooth discovery (ms) Handshake protocol (ms) Total time (ms)

Nokia 6600 master, Sony Ericsson p900 slave 16889.7 3349.6 20239.3

Sony Ericsson P900 master, Nokia 6600 slave 18826.4 3139.8 21966.2

Siemens S65 master, Sony Ericsson P900 slave 16745.1 4508.4 21253.5

Table 2. The Bluetooth discovery and handshake times

average of the results of 10 tests per configuration is shown

in Table 2.

Although, the total time is almost the same for the three

devices, the tests showed great variations between the three.

The main reason for this is the difference in CPU, memory

and the implementation of the Bluetooth API. The Blue-

tooth API for J2ME forces the application to halt until a

complete Bluetooth discovery is performed. This has a ma-

jor impact on the usability of peer-to-peer games in J2ME.

When gamers want to join a game, all gamers must wait un-

til a complete discovery process has completed (from 18 to

25 seconds). For a mobile gamer, this is a long time to wait.

Another and even bigger problem is that if new gamers want

to join in a game, all gamers have to wait another 20 sec-

onds before they can continue the game. This means that the

management of joining and exiting gamers is very difficult.

3.2 Bluetooth Transfer Speed

The theoretical bandwidth for Bluetooth 1.0 is 1.1

Mbits/sec, but this bandwidth is not often reachable in prac-

tical use. We have tested the bandwidth using the Java Blue-

tooth API over the distances 1 meter, 6 meter and 10 meter.

For 1 meter, the average transfer rate was 21 kilo Bytes per

second (KBps). The variation in transfer rates of the 30

runs of the distance of 1 meter was very small. For 6 me-

ters, the rate ranged from 19 up to 26 KBps and the average

rate was also here 21KBps. For the test of 6 meters, 1 of

the 30 runs failed. For the 10 meters test, the variation of

transfer rates was significant. The data rate ranged from 4

to 38 KBps while the average was as low as 12.3 KBps.

Two of the transmissions failed. The variation of transmis-

sion rates and the failed transmissions was probably caused

by disturbances in the radio link and radio interference. All

these tests were performed in an environment with little dis-

turbance of other Bluetooth devices or other radio transmit-

ters. This means that for games in J2ME using the Blue-

tooth API, the application cannot assume a higher transfer

rate than 10KBps in an environment of various Bluetooth

devices and other radio transmitters. Also, all the devices

playing the same game should be within a 10 meters radius

with clear sight between the devices.

3.3 Topology of Bluetooth Devices

The Bluetooth standard was not initially created to sup-

port peer-to-peer computing. The Bluetooth protocol as-

sumes a master-slave paradigm where one of the devices

must be the master of all the surrounding slaves. This means

that a master must initiate a search for possible slaves, and

let these slaves connect to the master. Since it is impossible

for a master also to be a slave, scatternet where more than

one network is connected is impossible on current Blue-

tooth devices. From a game-perspective, this means that

only one group of gamers can be simultaneously connected,

and one gamer can only be connected to one group at a time.

In theory, a Bluetooth master can connect to seven Blue-

tooth slaves at the same time. However, the number of

connections allowed varies from phone to phone. Through

tests performed in J2ME using the Bluetooth API on the

three mobile phones Sony Ericsson P900, Nokia 6600 and

Siemens S65, we found that these phones allowed a differ-

ent number of connections. For the Sony Ericsson P900,

it was only possible to connect to one other device, for the

Siemens S65 it was possible to connect to three other de-

vices, while the Nokia 6600 seamed to be the only phone

implementing the Bluetooth specification fully and supports

seven connections. This information is not documented by

any of the phone providers and was found through experi-

ments. The unknown number of Bluetooth connections sup-

ported by various phones makes it hard for the game devel-

opers to provide support for their network games. For the

gamer, it can be hard to know if a network game session is

failed because of lack of proper Bluetooth support in the de-

vice or bugs in the game software. Also it is more difficult

for the game publishers to give out the necessary informa-

tion about a game when the numbers of network players

supported is unknown.

3.4 Extra Resource Consumption

One of the main challenges for game development in

J2ME is to make a program that does not consume too much

memory and CPU. For the development of a peer-to-peer

J2ME game, this is an even bigger challenge. Memory and

CPU resources that could have been used on pure gameplay

must now be used to network management. Thus, it is im-

portant that the network management code is very compact

and that is consumes very little resources.

3.5 Other Issues

In the previous section, we showed that the way the Blue-

tooth API is implemented and supported on different mobile

phones varies. Another issue that is important for develop-

ment of peer-to-peer applications is support for multitask-

ing in the operating system. Some mobile phones has full

support for multitasking, making it possible to run applica-

tions in the background, while others have no support for

multitasking. For some peer-to-peer games, it is important

to have an opportunity for the J2ME application to be run

in the background to detect other gamers in the same area

and trigger some action if other gamers are found. For cur-

rent J2ME implementations, this is not possible. Currently,

the applications in J2ME can be halted and later resumed,

but not run in the background. This makes it impossible to

develop some specific types of peer-to-peer games in J2ME.

In a perfect world, a J2ME application gives the same

user experience when run on different mobile phones. This

is of course not the case, since the mobile phones varies in

screen sizes, number of colours on screen, keyboard, joy-

sticks etc. In addition, the mobile phone manufacturers

implement the J2ME virtual machine differently. This is

also the cause for the J2ME Bluetooth API. From our own

experiences, we found that the Sony Ericsson P900 has a

faulty Java Bluetooth API implementation. When returning

from a device discovery process, the P900 always return a

DEVICE DISCOVERY ERROR, even if devices have been

found properly. This is apparently due to a mix up of two

return values. This makes it difficult for the game develop-

ers to develop a J2ME peer-to-peer game that works for all

kinds of mobile phones with the J2ME Bluetooth API.

4 Support for Framework Categories in the

Bluetooth API

In this section, we will discuss how well the Bluetooth

API in J2ME supports the different categories of peer-to-

peer games identified in Section 2.

We will first look at the user interaction dimension of the

classification framework. The first category, I1 Controlled,

is fully supported in the Bluetooth API in J2ME. The con-

trolled interaction pattern fits very well with how Bluetooth

works and the way Bluetooth devices are communicating

using the master-slave paradigm. A typical scenario will be

that the device of one gamer will be the master and control-

ling the interaction of the slave devices. The interaction be-

tween the devices can either be turn-based or follow another

protocol specified by the master device. The I1 Controlled

group of applications will not demand much extra imple-

mentation in addition to the existing master-slave paradigm

found in Bluetooth.

The second category, I2 User interaction, can also be

implemented in the Bluetooth API in J2ME even through it

is not directly supported through the master-slave paradigm.

Here, the master device will route the events or messages of

the slaves to the appropriate devices. Compared to I1 type

of applications, I2 will demand some extra code for routing

events and messages.

The third category, I3 Automatic triggered, can be im-

plemented using the Bluetooth API but will not work opti-

mally for the user. Firstly, the long discovery time will be a

problem to detect other gamers before they are out of reach.

Secondly, the mobile devices must run the game in fore-

ground to be able to check for other nearby devices. This is

not acceptable for most users, as they want to use their mo-

bile phone to other purposes while waiting for other gamers.

Such types of games will not be a success before the dis-

covery time is less and J2ME applications can run in the

background.

The fourth group, I4 Automatic, suffers from the same

problems as I3 because of long discovery time and lack of

running J2ME applications in the background. For this kind

of games, it is unacceptable if the games cannot run in the

background - being the whole idea of such games.

We will now look at the data update frequency dimen-

sion in the classification framework. The two first groups,

U1 Asynchronous and Synchronous, will not be difficult

to support in the Bluetooth API in J2ME as small amount

of data is exchanged between the devices. However, the

support for U3 Real-time applications is limited due to the

maximum practical data transfer in Bluetooth for mobile

phones is about 10KBps. The data transfer rate is also de-

pendent on the number devices being connected. It is likely

that, real-time games with two players that exchange a min-

imum of data to be synchronised will work well. However,

games with more than two players is unlikely to work well

if more than simple state data must be exchanged.

To summarise, we can see that the categories I1, I2 and

U1 and U2 is well supported in J2ME Bluetooth API imple-

mentations in existing mobile phones. The other groups in

the classification framework are not well supported.

5 Related Work

In [5], a peer-to-peer middleware named Mobile Chedar

for mobile devices is described. The middleware is an ex-

tension to the Chedar peer-to-peer network allowing mobile

devices to access the Chedar network and communicate to

other Mobile Chedars. The paper identifies a shortcoming

in current Bluetooth implementations having a restriction

that nodes can only be connected to one piconet at a time.

For Mobile Chedar this meant that only one type of topol-

ogy could be used (star).

In [1], a middleware for streaming audio to Bluetooth

devices is presented. The paper describes tests of streaming

audio between a workstation and some laptops using Blue-

tooth interfaces. The tests showed that for streaming be-

tween one master and one slave device, the bit rate ranged

between 22KBps to 62KBps. As the number of slaves in-

creased, the bit rate decreased. For 5 slaves, the bit rate

ranged between 5KBps to 12KBps. These numbers to fit

well with the number we got on our tests, and confirm that

the number of slaves will cause a major decrease in bit rate.

6 Conclusions

In this paper we have presented a classification frame-

work that can be used to analyse issues that you must take

into account when developing wireless peer-to-peer games.

Further, we have identified shortcomings in current imple-

mentation of the Java Bluetooth API for J2ME. We have

found that the Bluetooth API has limited support for cre-

ating peer-to-peer games that involve automatic exchange

of data, and games that require real time updates of data.

The main problems of the Bluetooth implementation of ex-

isting mobile phones are slow discovery time, low transfer

rates and no support for scatternets. Will this change in the

future? The Bluetooth specification version 2.0 promises

to solve the problems presented in this paper. The version

2.0 is promised to provide up to 3 times faster transmission

speeds, faster device discovery, lower power consumption,

simplification of multi-link scenarios due to more available

bandwidth [11]. It will also be backwards compatible to

earlier versions.

References

[1] P. Bellavista, C. Stefanelli, and M. Tortonesi. The

ubiQoSMiddleware for Audio Streaming to Bluetooth

Devices. In First Annual International Conference on

Mobile and Ubiquitous Systems: Networking and Ser-

vices, pages 138–145, Boston, Massachusetts, USA,

August 22-26 2004.

[2] GameSpot. GameSpot:Video Games PC Playstation 2

GameCube PSP DS GBA PS2 PS3 Xbox 360 Playsta-

tion 3. http://www.gamespot.com/, 2005.

[3] D. S. Kochnev and A. A. Terekhov. Surviving Java

for Mobiles. IEEE Pervasive Computing, 2(2):90–95,

2003.

[4] G. Kortuem, J. Schneider, D. P. Thaddeus, G. C.

Thompson, S. Fickas, and Z. Segall. When Peer-to-

Peer comes Face-to-Face: Collaborative Peer-to-Peer

Computing in Mobile Ad hoc Networks. In First In-

ternational Conference on Peer-to-Peer Computing,

Linköping, Sweeden, 27-29 August 2001.

[5] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori. Mo-

bile Chedar – A Peer-to-Peer Middleware for Mo-

bile Devices. In Third IEEE International Conference

on Pervasive Computing and Communications Work-

shops, pages 86–90, Kauai Island, Hawaii, March

2005.

[6] J. Krikke. Samurai Romanesque, J2ME, and the Battle

for Mobile Cyberspace. IEEE Computer Graphics and

Applications, 23(1):16–23, 2003.

[7] N. Leavitt. Will Wireless Gaming Be a Winner? IEEE

Computer, 36(1):24–27, 2003.

[8] L. Lefèvre and A. Saroukou. Active network sup-

port for deployment of Java-based games on mo-

bile platforms. In First International Conference on

Distributed Frameworks for Multimedia Applications,

pages 88–95, Besancon, France, February 6–9 2005.

[9] MOWAHS. Peer2me. http://www.peer2me.org, 2005.

[10] Nintendo. Nintendogs for Nintendo DS.

http://www.nintendogs.com/, 2005.

[11] B. SIG. Bluetooth Wireless - News.

http://www.bluetooth.com/news/releases.asp?

A=2&PID=1437&ARC=1, 2005.

[12] M. Wiberg and Åke Grönlund. Exploring Mobile

CSCW: Five areas of questions for further research. In

Proceedings of IRIS23 (Information Research in Scan-

dinavia), Trollhättan, Sweden, 2000.

