
t i m t r a i n w i t h b r i a n r e y n o l d st i m t r a i n w i t h b r i a n r e y n o l d s

36

P O S T M O R T E M

T he name of our company is a summa-
tion of our corporate attitude: aim
for the top, but don’t take yourself
too seriously along the way. In
this case, “aiming for the

top” meant putting together a company
and a game designed to go head-to-head in
one of the most competitive and resource-
intensive segments of the PC market-
place: real-time strategy games. To suc-
ceed, our first game needed all the
fun, depth, and polish of products
that enjoyed bigger budgets and
more manpower due to their rec-
ognizable franchises. Since they
don’t give out Game Developers
Choice Awards for “Best Game Made
With Fewer Than 30 People,” we had to
find ways to work both harder and
smarter if we wanted to achieve our goals.

Big Huge Games was formed in early
2000 by a core team who had worked
together for close to 10 years, creating
best-sellers such as COLONIZATION,
CIVILIZATION II, and ALPHA

CENTAURI. This history of suc-
cessful strategy games allowed
us to go to publishers with a
convincing pitch for a next-gen-
eration RTS. Although we
understood the issues
involved in creating turn-
based games, almost all
of the areas where we
failed to address risks
adequately involved
areas where we had
minimal experi-
ence, such as mul-
tiplayer match-
making and
making linear sin-

gle-player campaigns. In addition to these, we also
stumbled in some areas that were unique to our sit-
uation and company culture.

What Went Right

1. Prototype method of game
design. Part of the core

vision for RISE OF NATIONS

involved introducing gameplay
innovations inspired by our
experience making turn-based
games into the “classic” real
time strategy mix. We had 10

to 15 “wild” ideas about what
might take realtime strategy in

new directions, but we knew that only some,
maybe only a small few, were going to work, and
we didn’t know which ones. It was essential that
we find out as soon as possible which ideas were
worth implementing, and we knew from experience
that the only sure way to accomplish this is to
throw the ideas into a playable prototype right from

the beginning.
We got a playable solo prototype running

within the first month, and a fully
playable multiplayer version more than
two years prior to ship. We could throw
new ideas in and see the results almost
immediately: some concepts needed a

little tweaking to be fun, while oth-
ers got trashed almost as soon as
they went in. The value of pro-
totyping is that core concepts
end up being continuously
refined over years, while pro-

viding lots of time to balance
the game.

As part of the proto-
type approach to
design, we make sure
that everyone in the

j u l y 2 0 0 3 | g a m e d e v e l o p e r

Big Huge Games’

RISE OF NATONS

37

T I M T R A I N | As vice president of operations and development, Tim heads up the internal development
of Big Huge Games. With 12 years of leadership and team experience on numerous landmark PC
titles beginning with CIVILIZATION I, Tim has worked in every genre of computer games. Tim served
as executive producer and designer on RISE OF NATIONS.
B R I A N R E Y N O L D S | Brian is president of Big Huge Games and a 12-year industry veteran.
Honored by PC Gamer as one of 25 “Game Gods,” Brian has masterminded the design of numerous
hit strategy games, including CIVILIZATION II and ALPHA CENTAURI, and now RISE OF NATIONS.

w w w . g d m a g . c o m

company is playing the game on a regular basis. After
each daily play session, a member of the design team
compiles everyone’s feedback and sends a summary to
the rest of the designers. However, we found that we
had to be willing to wade through some resistance to
new features or gameplay tweaks. People would get
very attached to certain strategies for playing or even
just conventions of RTS games of which they were hesi-
tant to let go.

2. Choosing the right publisher. Over the
years, the production values and polish levels

on RTS games have risen along with the popularity of
the genre. Given the scope of the competition we were
up against, a major concern for us was finding a pub-
lisher who would be willing to invest the resources
necessary in a new company to produce a product that
could go head-to-head with the “big boys” — in
essence, finding a publisher who shared our culture and
values. Our task was made somewhat easier by the fact
that the core team had already notched a couple of mil-
lion-sellers with other companies, but we still had diffi-
culty in selling publishers on our business model.

In early 2000, when the company began, the industry
was in the throes of online mania and at the height of
the Internet bubble. The “smart” money was flowing to
online game sites and massively multiplayer titles.
However, in our pitch meeting with Microsoft, we were
impressed with their approach: when we asked them
which of our five proposals they were most interested
in, they just asked us which game we’d be most interest-
ed in making. They seemed more interested in the team
than in the specific proposal, which in our experience is
a great approach to produce top-quality games.

Once we signed on board with Microsoft, we were
amazed at the level of support they gave us. When we
thought of Microsoft, we took their marketing and
sales capabilities for granted, but we were equally
impressed by the quality of their development support.
Two key groups really helped us polish our game: the

G A M E D A T A

PUBLISHER:Microsoft
NUMBER OF FULL-TIME DEVELOPERS: 26

NUMBER OF CONTRACTORS:16
LENGTH OF DEVELOPMENT: 3 years

RELEASE DATE: May 20, 2003
TARGET PLATFORM:PC

DEVELOPMENT HARDWARE: WinXP PC
DEVELOPMENT SOFTWARE USED:

Boundschecker, Altova XMLSpy,
Araxis Merge, MacroExpress, PCLint,

3DS Max, Character Studio, MS Developer
Studio 6.0, Perforce Source Control,

Xoreax Incredibuild, Visual Assist,
Workspace Whiz, Alexsys Team,

Adobe Photoshop, Adobe Premiere,
Intel VTUNE

PROJECT SIZE: *.C, *.CPP, *.H:
1,721 total source files,

837, 939 total lines, 24,610,223 total bytes;
*.BHS: 46 total files, 24,330 total lines,

966,289 total bytes

P O S T M O R T E M

j u l y 2 0 0 3 | g a m e d e v e l o p e r38

play-balancers and the usability labs. Throughout much of the
last eight months of the project we had four to six full-time
play-testers assigned to the project whose sole job was helping
to balance the game. These guys were expert-level RTS players
who could smoke the designers after very little time with the
game. They helped us find and fix all kinds of broken strategies
and degenerate gameplay, and ensured a much more balanced
game for hardcore players right out of the gate.

The usability labs took care of the other end of the spectrum,
the casual players who aren’t as familiar with the ins and outs of
RTS games. Between the various tutorials, core gameplay, and the
Conquer the World single-player campaign, members of Big Huge
took up five weeks of the usability labs as we watched beginner-
level players struggle through basic game concepts. Our program-
mers were there in the labs, coding changes on the fly, able to put
a new version up for the next subject. Usability’s input resulted in
hundreds of changes to the game, making it more streamlined and
easy to jump into. It’s hard to overstate the contribution both the
play-test and usability groups made to the final product.

3. Disciplined hiring process. We started the compa-
ny with a proven method of developing strategy

games through prototyping, and soon afterward we had a pub-
lisher that shared our vision and complemented our strengths.
What we didn’t have, and what would certainly be the biggest
single factor in achieving our goals, was a full team.

From the start of the company, we took great care in selecting
our staff, adopting an interview system that we thought worked
well for Ensemble Studios. All candidates that make it through

two rounds of phone interviews are brought to Big Huge and
interviewed by every person on staff. After each interview the
company meets and discusses the candidate’s strengths and weak-
nesses, at which point anyone can veto a hire for any reason.

Although this process has gotten more time-consuming and
difficult as the company has grown, the end result has been well
worth the effort. A major advantage of this system is ensuring
that every new hire can work and play well with others; if they
can impress through multiple interviews with a diverse set of
people, then we can have confidence that they will fit in from
day one. Perhaps most importantly, it ensures that none of our
full-timers has the experience of being introduced to someone
they’ve never met before in their life as “. . . And here’s who
you’ll be working with on such-and-such for the next year.”

4. Developing powerful in-house tools. Our pro-
grammers worked from the philosophy that taking a

little extra time initially to develop a good tool or algorithm
pays off manyfold in time saved over the course of the project,
while improving the quality of the final product. We also
learned not to rely exclusively on one particular tool but rather
to use an array of tools to help narrow down a problem.
Following are some of the internal tools and techniques which
paid the biggest dividends for us:

The section profiler. Our lead programmer, Jason
Coleman, created an interactive visual profiler, which helped us
identify the correct time segments to bring optimization
resources to bear, particularly when trying to identify intermit-
tent spikes in performance that would ordinarily be averaged

catption here

w w w . g d m a g . c o m 39

out when running a profiler over
many game frames. Our program-
mers mark the beginnings and
ends of key sections of our code as
belonging to one of about 20 color-coded cate-
gories (such as render units, network, pathfinding, and
so on). Then, as the game runs, the programmers have access
to an interactive graphic window with slider bars for time and
scale. The profile chart changes color each time the program
moves from one section to another, and longer times in a par-
ticular section of course result in longer blocks of a particular
color. It is easy to spot spikes in a particular section and then,
using our “recorded game” feature to repeat a game precisely, a
more powerful profiling tool such as VTune can be brought to
bear on just that particular time segment, thereby avoiding the
“averaging out” effect. The section profiler also helps us spot
sections that are being entered too often, even if not for very
long.

The parameter window. Graphics programmer Jason
Bestimt created an interactive “parameter window” module,
which allows our programmers to register as many variables as
they’d like as parameters, which can then be interactively con-
trolled during the game with their choice of slider bars, combo
boxes, or edit boxes, using a special pop-up console without
causing performance degradation. Being able, for instance, to
pull up an interactive page that controls all of the render states
for any desired graphics element made for great progress on
special effects. For example, the nuclear blast effect could be
fine-tuned without having to repeatedly recompile (or even
rerun) the game: the programmer and artist just sat there and
pulled on the slider bars until it looked just right.

The Const System for multiplayer. One of the great night-
mares of creating multiplayer strategy games is keeping the
game world synchronized across each of the player’s machines.
Game code and random number generators must run in virtual
lockstep across every machine in the game, or the whole game
world shatters and goes out of sync — the multiplayer program-
mer’s worst-case scenario which effectively ends gameplay.
Interaction with the outside world (such as the commands play-
ers give to their units) must be carefully propagated to all
machines before they can be safely executed or even safely
“seen” by code that can write to the game state. The smallest
unintentional bypassing of this rule can result in disaster (such as
a graphics routine that accidentally uses the game-side random
number generator, or an input routine that directly affects the
game world without passing it through the network protocols).

To avoid most of the potential catastrophes of this type we
created the “Const System,” essentially a compiler-assisted fire-
wall between the game-world side of the code and the I/O
(graphics and interface) side of the code. There’s game-side
data (the simulation) and non-game-side data (everything else).
Game-side is allowed read-write access to itself but write-only
access to the non-game-side (rendering, for example). Non-
game-side is allowed read-write access to itself but read-only
(const) access to the game-side (user input isn’t allowed to

directly modify the game-state).
The real compiler tricks involved

the fact that C++ doesn’t have an inher-
ent notion of write-only (new standard, any-

one?). Also, once this was worked out, all remain-
ing sync issues involved either the occasional, foolhardy

overriding of the system, or bugs such as uninitialized data
or memory overwrites. Two sets of macros (one each for game
and interface access) made this scheme mostly transparent to
programmers. The end result was that many of the potentially
thorniest multiplayer bugs became easy-to-find “compile errors”
instead of nearly impossible-to-find intermittent out-of-syncs.

5. Great third-party productivity tools. One of the
great life-changers for our team was Xoreax’s

Incredibuild tool. Essentially it lets us turn every machine on our
company network into a vast compile farm — the tool automati-
cally makes use of free cycles on everyone’s machines to compile
our game at jaw-dropping speeds. Even when RISE OF NATIONS

was in gold release, our entire game could compile, including all
of the libraries, in just under two minutes. Optimizations added
an entire extra 15 seconds to the process. Linking the code, the
one step which must be performed entirely on the programmer’s
own machine, took an extra 45 seconds. So, in other words, the
final release of RISE OF NATIONS that we delivered to Microsoft
probably compiled and linked in around three minutes.

The ability to compile (and recompile) the code so quickly led
not only to greatly speeded debugging and development, it also
resulted in much cleaner code: programmers no longer feared
changing header files with the half-hour-plus recompile formerly
associated with such an action, so they no longer felt tempted to
resort to messy workarounds and hacks just to avoid a full
recompile. An amusing side-note is that programmers who had
structured their lives around using long compiles to grab drinks,
chat, and play chess suddenly had to rethink their whole day.

Other tools well-loved by our programming team include the

catption here

Visual Assist and Workspace Whiz add-ons to Microsoft’s
Developer Studio. These two tools add a ton of little improve-
ments to the development environment that end up completely
changing the way programmers use Dev Studio. Features
include toggling directly from .CPP to .H files, opening any file
in your workspace (without needing to provide a path), and
automatic grammar correction. Our programmers always com-
ment about how sad they are when they have to debug on a
machine without these tools installed.

From the standpoint of task organization, the lifesaver for us
was Alexsys’ Team software. This system replaced our “Post-It
note” method of project management with an extremely config-
urable setup and easy access to tasks. One of the greatest fea-
tures of Team is its capacity to send e-mail alerts whenever a
task is created or modified. As a company we use e-mail a lot,
and having a project management system that essentially forced
everyone to stay current with tasks was invaluable.

What Went Wrong

1. Not listening to all the other Postmortems ever
printed in Game Developer. The Postmortems are

the most widely read feature in Game Developer around Big
Huge, and yet somehow we still managed to make many of the
mistakes developers are cautioned against in these pages. We
underestimated the amount of coding time necessary, which
resulted in an extremely overworked programming staff. We
misjudged the amount of revision time that we’d want for vari-
ous systems. We overloaded our lead programmer such that he
became the bottleneck on a number of critical systems, includ-
ing multiplayer and matchmaking. Most of this could be traced
back to simply not hiring enough programmers early in the proj-
ect, and was compounded by lack of scheduling and technical
oversight. We also never knew what was “enough” — since this
was our first project in the RTS world, we were desperate to
cram everything in that we could think of. For the next project,
we will certainly hire more programmers and not schedule our
lead programmer for anything other than management and sup-
port, with the expectation that he will have some flexibility to
jump in and help out wherever it’s needed. We also expect that
we’ll have a much more straightforward perspective on schedul-
ing to meet our goals.

Another classic blunder (comparable to getting involved in a
land war in Asia) was in undervaluing single-player tool cre-
ation. We always assigned our most recent programmer hire at
any time to be the “scenario tools” guy, meaning we not only
always had our least-experienced team member doing that
work, we also had no continuity since we’d pass the torch each
time we hired someone new. The editor also suffered grievously
from several revamps of the game’s terrain system and other
parts of the engine. Hence, we had a great deal of difficulty cre-
ating single-player scenarios, and we were very fortunate to
have the Conquer the World campaign turn out as well as it
did. In the last few weeks of development, programmers Ike

P O S T M O R T E M

j u l y 2 0 0 2 | g a m e d e v e l o p e r40

catption here

catption here

Ellis and Scott Lewis finally whipped the editor
into shape with some intense hours and smart
coding, but for the next game we will have
someone working on this module early and
throughout the project. This task will also
be easier because we’ll be working from a
more mature engine.

2. No clear idea of the kind of
game we were making. In the first year, both we and

the publisher waffled back and forth on whether we should be
doing a “classic” RTS game, a completely new kind of strategy
game with some real-time elements, or something in-between.
The prototype would swing back and forth between those two
poles. Eventually, external events (such as the release of Empire
Earth and Microsoft’s purchase of Ensemble Studios) made it
clear that a straight-down-the-line “classic” RTS was not the
right game to be working on, but not before several months of
work on art and game design were wasted going back and
forth.

For the next game, we have a much better sense of what our
style of game should encompass — epic scope, strategic depth,
and large armies clashing — and hopefully we won’t have to be
so concerned about standing in the shadows of the other giants
of the genre. We’ve also got a much stronger sense about what
works and what doesn’t in an RTS game.

3. Hard time finding the look from the art per-
spective. Partly because of the preceding problem,

we took longer than usual to nail down an art look for the
game. Among other issues, it took us some time to decide
whether we’d be fully 3D. The rest of the market was going full
3D, but we really loved the detail and crispness that 2D offered
for things such as building graphics. The only engine feature we
would give up to go 2D was the ability to rotate the camera,
which we’d never found to be very useful in RTS games any-
way. However, there was also a lot of hand-wringing about
whether we’d be considered behind the curve graphically.

We did numerous tests with 3D and discussed the issue with
marketing, but in the end we went with a 3D engine that utilized
2D for buildings. We’ve been happy with how the game looks
and think the high detail on the buildings adds a lot to the world.
Next time, we’ll do a lot more prototype art and concept work
before going into full production, and we’ll be more confident
diving into a fully 3D world off the bat. Having an experienced,
full staff will also help with this issue — at the beginning of RISE

OF NATIONS we made do with just a couple of artists.
We were also faced with the classic dilemma of doing a history

game — it’s hard to differentiate yourself from earlier products
when you are drawing from common source material. A pikeman
looks like a pikeman, no matter how radical an approach you try
to take. For the most part, we attacked this issue on the market-
ing end. We focused on creating screenshots from the later eras of
the game and highlighted the diversity in cultural art sets from

nations that hadn’t been covered as much in
other products. Art leads Bill Podurgiel and

Ted Terranova worked hard to create units
and buildings that were both realistic and var-
ied, ultimately helping to help differentiate the
look from that of other products.

4. Solo scenario meltdown. When
we started work on RISE OF

NATIONS, we assumed that the single-player game would feature
classic RTS–style linked scenarios that followed a nation’s history
over time. However, we started work on those scenarios and
found that they just weren’t particularly appropriate for our sub-
ject matter — it’s not a lot of fun to take a game about all of his-
tory and then constrain players to a smaller canvas and scope.
This approach also did not play to our strengths as developers;
we are more interested in creating open-ended and infinitely
replayable experiences than in making a scripted, linear campaign.

Our prototype design process ended up helping the situation.
Starting from scratch, programmer Ike Ellis coded up the skele-
ton of the module that would become Conquer the World, which
aimed to bring context and meaning to linked scenarios that
change depending on choices the player makes throughout the
game. This campaign mode went from a prototype experiment to
a central selling point for the game in less than nine months, and
we are planning a new version of Conquer the World for the
next game.

5. Refusal to acknowledge the true state of the
game in the final months. Our insistence that we

could power through our bug counts at a faster-than-light clip
meant that we worked our team much harder than we should
have going into the final months of the project. There were a
couple of modules that were going to cause us to slip by the
month that we did, and recognizing reality sooner would have
saved much of the team a death march that was extremely diffi-
cult for all involved.

On the next project, we’ll retain our faith in our programming
team while making more effort to be up-front with ourselves
about the status of the project at any given time. Specifically, we
need to pay more attention to our bug counts as reflective of the
state of the project. We will also be more careful about not call-
ing something “done” until it is truly “done-done-done,” and
adjust our schedules and expectations accordingly.

It Takes More Than Effort
We’re extremely happy with how RISE OF NATIONS has turned

out. We started the company with a vision of how games
should be created and how teams function best. In the end, the
only tangible validation to our approach is the quality of our
games. We said many times during the project that the gaming
public only rewards success, not effort; we hope that Rise of
Nations demonstrates our commitment to both. q

w w w . g d m a g . c o m 41

