
a p r i l 2 0 0 2 | g a m e d e v e l o p e r48

s t e p h e n w h i t e

G A M E D A T A

PUBLISHER: Sony Computer Entertainment
NUMBER OF FULL-TIME DEVELOPERS: 35

LENGTH OF DEVELOPMENT: 1 year of initial
development, plus 2 years

of full production.
RELEASE DATE: December 2001

PLATFORM: Playstation 2
OPERATING SYSTEMS USED: Windows NT,

Windows 2000, Linux
DEVELOPMENT SOFTWARE USED: Allegro

Common Lisp, Visual C++, GNU C++,
Maya, Photoshop, X Emacs, Visual

SlickEdit, tcsh, Exceed, CVS

P O S T M O R T E M

B y the end of 1998, Naughty
Dog had finished the third
game in the extremely suc-
cessful CRASH BANDICOOT

series, and the fourth game,
CRASH TEAM RACING, was in development
for a 1999 year-end holiday release. And
though Sony was closely guarding the
details of the eagerly awaited Playstation 2,
rumors — and our own speculations —
convinced us that the system would have
powerful processing and polygonal capabil-
ities, and we knew that we’d have to think
on a very grand scale.

Because of the success of our CRASH

BANDICOOT games (over 22 million copies
sold), there was a strong temptation to
follow the same tried-and-true formula of
the past: create a linear adventure with
individually loaded levels, minimal story,
and not much in the way of character
development. With more than a little trep-
idation, we decided instead to say good-
bye to the bandicoot and embark on
developing an epic adventure we hoped
would be worthy of the expectations of
the next generation of hardware.

For JAK & DAXTER, one of our earliest
desires was to immerse the player in a sin-
gle, highly detailed world, as opposed to
the discrete levels of CRASH BANDICOOT.
We still wanted to have the concept of lev-
els, but we wanted them to be seamlessly
connected together, with nonobvious
boundaries and no load times between
them. We wanted highly detailed land-

scapes, yet
we also
wanted
grand vistas
where the
player could
see great dis-
tances, includ-
ing other sur-
rounding levels. We
hoped the player would be
able to see a landmark far off in the dis-
tance, even in another level, and then trav-
el seamlessly to that landmark.

It was important to us that Jak’s world
make cohesive sense. An engaging story
should tie the game together and allow for
character development, but not distract
from the action of the game. The world
should be populated with highly animated
characters that would give Jak tasks to
complete, provide hints, reveal story ele-
ments, and add humor to the game. We
also wanted entertaining puzzles and ene-
mies that would surpass anything that we
had done before.

To achieve these and many other diffi-
cult tasks required three years of exhaust-
ing work, including two years of full pro-
duction. We encountered more than a few
major bumps in the road, and there were
times when the project seemed like an
insurmountable uphill battle, but we man-
aged to create a game that we are quite
proud of, and we learned several important
lessons along the way.

Naughty Dog’s

JAK & DAXTER:
THE PRECURSOR LEGACY

What Went Right

1. Scheduling. Perhaps
Naughty Dog’s most impor-

tant achievement is making large-scale
games and shipping them on time,
with at most a small amount of slip.
This is an almost unheard of combi-
nation in the industry, and although
there is a certain amount of luck
involved, there are valid reasons to
explain how Naughty Dog has man-
aged to achieve this time and again.

Experience will tell you it’s impos-

sible to predict the precise details of
what will be worked on more than a
month or two in advance of doing it,
yet many companies fall into the
trap of trying to maintain a highly
detailed schedule that tries to look
too far into the future. What can’t be
effectively worked into these rigid
schedules is time lost to debugging,
design changes, over-optimism, ill-
ness, meetings, new ideas, and myri-
ad other unpredictable surprises.

At Naughty Dog, we prefer a
much more flexible, macro-level

S T E P H E N W H I T E | Stephen is the programming director of Naughty Dog,
where he has been instrumental in the development of the CRASH BANDICOOT

games as well as JAK & DAXTER: THE PRECURSOR LEGACY. Stephen is an industry
veteran with over 15 years of published programming experience, including the
multi-award-winning Deluxe Paint ST and Brilliance.

w w w . g d m a g . c o m 49

BLUE SAGE

KEIRA

GOL

BIRD LADY

THE SAGE

MAIA

CHIEF

FARMER

scheduling scheme, with milestone
accomplishments to be achieved by cer-
tain dates. The schedule only becomes
detailed for tasks that will be tackled in
the near future. For example, a certain
level will be scheduled to have its back-
ground modeled by a certain date. If the
milestone is missed, then the team makes
an analysis as to why the milestone was-
n’t achieved and changes plans accord-
ingly: the background may be reduced in
size, a future task of that artist may be
given to another artist to free up more
time, the artist may receive guidance on
how to model more productively, or
some future task may be eliminated.

In the case of JAK & DAXTER, we used
the knowledge we’d gained from creating
the CRASH BANDICOOT games to help esti-
mate how long it should take to model a
level. As we modeled a few levels, how-
ever, we soon realized that our original
estimates were far too short, and so we
took appropriate actions. If we had
attempted to maintain a long-term, rigid-
ly detailed schedule, we would have
spent a lot of time trying to update some-
thing that was highly inaccurate. Beyond
this being a waste of time, the constant
rescheduling could have had a demoraliz-
ing effect on the team.

2. Effective localization tech-
niques. We knew from the start

that we were going to sell JAK & DAXTER

into many territories around the world,
so we knew we would face many local-
ization issues, such as PAL-versus-NTSC,
translations, and audio in multiple lan-
guages. Careful structuring of our game
code and data allowed us to localize to a
particular territory by swapping a few
data files. This meant we only had to
debug one executable and that we had
concurrent development of all localized
versions of the game.

All of our animation playback code
was written so that it could automatical-
ly step animations at a rate of 1.2
(60fps/50fps) when playing in PAL. We
also used a standardized number of units
per second so that we could relate the
amount of time elapsed in a game frame
to our measure of units per second. Once

everything was nice and consistent, then
timing-related code no longer had to be
concerned with the differences between
PAL and NTSC.

Physics calculations were another
issue. If a ball’s motion while being
dropped is computed by adding a gravi-
tational force to the ball’s velocity every
frame, then after one second the ball’s
velocity has been accelerated by gravity
60 times in NTSC but only 50 times in
PAL. This discrepancy was big enough to
become problematic between the two
modes. To correct this problem, we made
sure that all of our physics computations
were done using seconds, and then we
converted the velocity-per-second into
velocity-per-game-frame before adding
the velocity to the translation.

3. Seamless world, grand vis-
tas, and no load times. We

knew very early on in the development of
JAK & DAXTER that we wanted to
immerse the player within one large
expansive world. We didn’t want to stall
the game with loads between the various
areas of that world.

JAK & DAXTER’s designers had to over-
come many obstacles to achieve our open
environments. They had to lay out the

levels of the world carefully so that levels
could be moved in and out of memory
without stalling gameplay or causing
ugly visual popping. They also had to
create challenges that would engage the
player and maintain the player’s interest,
even though the player could roam freely
around the world. And they had to tune
the challenges so that the difficulty
ramped up appropriately, without giving
players the impression that they were
being overly directed.

The programmers had to create tools to
process interconnected levels containing
millions of polygons and create the fast
game code that could render the highly
detailed world. We developed several com-
plex level-of-detail (LOD) schemes, with
different schemes used for different types
of things (creatures versus background),
and different schemes used at different
distances, such as simplified models used
to represent faraway backgrounds, and
flats used to represent distant geometry.
At the heart of our LOD system was our
proprietary mesh tessellation/reduction
scheme, which we originally developed for
CRASH TEAM RACING and radically
enhanced for JAK & DAXTER.

The artists had the burden of generat-
ing the enormous amount of content for

P O S T M O R T E M

a p r i l 2 0 0 2 | g a m e d e v e l o p e r50

The game’s real-time lighting scheme transitioned through multiple times of day with realistic
coloring and shadows.

these environments. Their task was com-
plicated by the very specialized construc-
tion rules they had to follow to support
our various renderers. Support tools and
plug-ins were created to help the artists,
but we relied on the art staff to overcome
many difficulties.

4. Camera control. From the ini-
tial stages of JAK & DAXTER, we

looked at the various camera schemes
used in other games and came to the
depressing conclusion that all existing
camera schemes had serious issues. We
suspected that making a well-behaved
camera might be an unsolvable 3D prob-
lem: How could one possibly create a
camera that would maneuver through a
complex 3D world while behaving both
unobtrusively and intelligently?

Only fools would believe that all prob-
lems have a solution, so, like idiots, we
decided to give it a try. The resulting
camera behaved extremely well, and
although it had its limitations, it proved
the problem does indeed have a solution.
Jak can jump through trees and bushes,
duck under archways, run between scaf-
folding, scale down cliffs, and hide

w w w . g d m a g . c o m 51

Extensive character sketches and color key/
concept design work were done in advance of
actual modeling.

behind rocks, all with the camera unob-
trusively keeping the action in view.

We wanted the player to be able to con-
trol the camera, but we did not want to
force the player to do so. Players can use
the second joystick to maneuver the cam-
era(rotating the camera or moving it closer
to or farther from Jak), but we were con-
cerned that some people may not want to
manipulate the camera, and others, such as
children, may not have the required
sophistication or coordination. Therefore,
we worked very hard at making the cam-
era do a reasonable job of showing players
what they needed to see in order to com-
plete the various challenges. We accom-
plished this through a combination of
camera volumes with specially tuned cam-
era parameters and specialized camera
modes for difficult situations. Also, crea-
tures could send messages to the camera
in order to help the camera better
show the action.

This may sound
funny, but an
important feature
of the camera was
that it didn’t make
people sick. This
has been a serious
problem that has
plagued cameras in
other games. We
spent a bit of time
analyzing why peo-
ple got sick, and

we tuned the camera so that it reduced
the rotational and extraneous movement
that contributed to the problem.

Perhaps the greatest success of the cam-
era is that everyone seems to like it. We
consider that a major accomplishment,
given the difficulty of the task of creating it.

5.GOAL rules! Practically all of the
run-time code (approximately

half a million lines of source code) was
written in GOAL (Game Object Assembly
Lisp), Naughty Dog’s own internally
developed language, which was based on
the Lisp programming language. Before
you dismiss us as crazy, consider the
many advantages of having a custom
compiler.

Lisp has a very consistent, small set of
syntactic rules involving the construction

and evaluation of lists. Lists
that represent code are

executed by evaluating the
items that are in the list; if
the head of the list is a

function

(or some other action), you could think of
the other items in the list as being the
parameters to that function. This simplici-
ty of the Lisp syntax makes it trivial to cre-
ate powerful macros that would be diffi-
cult or impossible to implement using C++.

Writing macros, however, is not enough
justification for writing a compiler; there
were features we felt we couldn’t achieve
without a custom compiler. GOAL code,
for example, can be executed at a listener
prompt while the game is running. Not
only can numbers be viewed and tweaked,
code itself can be compiled and down-
loaded without interrupting or restarting
the game. This allowed the rapid tuning
and debugging, since the effects of modi-
fying functions and data structures could
be viewed instantaneously.

We wanted creatures to use nonpreemp-
tive cooperative multi-tasking, a fancy
way of saying that we wanted a creature
to be able to execute code for a while,
then “suspend” and allow other code to
execute. The advantage of implementing
the multi-tasking scheme using our own
language was that suspend instructions
could be inserted within a creature’s code,
and state could be automatically preserved
around the suspend. Consider the follow-
ing small snippet of GOAL code:

(dotimes (ii (num-frames idle))

(set! frame-num ii)

(suspend)

)

P O S T M O R T E M

a p r i l 2 0 0 2 | g a m e d e v e l -52

Screenshot showing highest level of detail of in-game geometry for
the Forbidden Jungle level.

The same shot displayed with textures.

This code has been simplified to make
a point, so pretend that it uses a counter
called ii to loop over the number of
frames in an animation called idle. Each
time through the loop the animation
frame is set to the value of ii, and the
code is suspended. Note that the value of
ii (as well as any other local variables) is
automatically preserved across the sus-
pend. In practice, the preceding code
would have been encapsulated into a
macro such as:

(play-anim idle
;; Put code executed for each time..
;; through the loop here.
)

There are other major compiler advan-
tages: a unified set of assembly op-codes
consistent across all five processors of the
Playstation 2, register coloring when
writing assembly code, and the ability to
intermix assembly instructions seamlessly
with higher-level code. Outer loops could
be written as “slower” higher-level code,
while inner loops could be optimized
assembly.

What Went Wrong

1.GOAL sucks! While it’s true that
GOAL gave us many advantages,

GOAL caused us a lot of grief. A single
programmer (who could easily be one of
the top ten Lisp programmers in the
world) wrote GOAL. While he called
his Lisp techniques and programming
practices “revolutionary,” others
referred to them as “code encryption,”
since only he could understand them.
Because of this, all of the support, bug
fixes, feature enhancements, and opti-
mizations had to come from one person,
creating quite a bottleneck. Also, it took
over a year to develop the compiler,
during which time the other program-
mers had to make do with missing fea-
tures, odd quirks, and numerous
bugs. Eventually
GOAL became
much more
robust, but even
now C++ has
some advantages

over GOAL, such as destructors, better
constructors, and the ease of declaring
inline methods.

A major difficulty was that we worked
in such isolation from the rest of the
world. We gave up third-party develop-
ment tools such as profilers and debuggers,
and we gave up existing libraries, including
code previously developed internally.
Compared to the thousands of program-
mers with many years of C++ experience,
there are relatively few programmers with
Lisp experience, and no programmers
(outside of Naughty Dog) with GOAL
experience, making hiring more difficult.

GOAL’s ability both to execute code at
the listener and to replace existing code in
the game at run time introduced the prob-
lem of memory usage, and more specifical-
ly, garbage collection. As new code was
compiled, older code (and other memory
used by the compiler) was orphaned, even-
tually causing the PC to run low on free
memory. A slow garbage collection process
would automatically occur when

available memory became sufficiently low,
and the compiler would be unresponsive
until the process had completed, some-
times taking as long as 15 minutes.

2.Gameplay programming.
Because we were so busy creating

the technology for our seamless world,
we didn’t have time to work on game-
play code until fairly late in the project.
The situation caused no end of frustra-
tion to the designers, who were forced to
design levels and creatures without being
able to test whether what they were
doing was going to be fun and play well.
Eventually programmers were moved off
of technology tasks and onto gameplay
tasks, allowing the designers to play the
game and make changes as appropriate.
But without our designers’ experience,
diligence, and forethought, the results
could have been a disaster.

3.Audio. We were plagued
with audio-related prob-

lems from the start. Our first
indication that things might not be
going quite right was when our
sound programmer quit and
moved to Australia. Quickly hir-
ing another sound programmer

would have been the correct
decision. We tried several

P O S T M O R T E M

Village geometry displayed with textures and sunrise lighting. About 5,000 time-of-day lights
were used in the game.

a p r i l 2 0 0 2 | g a m e d e v e l o p e r54

other schemes, however, made some poor
choices, and had quite a bit of bad luck.
We didn’t recognize until fairly late in
development what a monumental task
audio was going to be for this project. Not
only did JAK & DAXTER contain original
music scores, creature and gadget noises,
ambient sounds, and animated elements,
but there are also over 45 minutes of story
sequences, each containing Foley effects and
speech recorded in six different languages.

Our audio issues could be broken up
into four categories: sound effects,
spooled Foley, music, and localized dia-
logue. Due to the large number of sound
effects in the game, implementing sound
effects became a maintenance nightmare.
No single sound effect was particularly
difficult or time-consuming; however,
creating all of the sound effects and
keeping them all balanced and working
was a constant struggle. We needed to
have more time dedicated to this prob-
lem, and we needed better tool support.

We used spooled Foley for lengthy
sound effects, which wouldn’t fit well in
sound RAM. Spooling the audio had
many advantages, but we developed the
technology too late in the project and
had difficulty using it due to synchro-
nization issues.

Our music, although expertly com-
posed, lacked the direction and attention
to detail that we had achieved with the
CRASH BANDICOOT games. In previous
games, we had a person who was respon-
sible for the direction of the music. Un-
fortunately, no one performed that same
role during JAK & DAXTER.

Dialogue is a difficult problem in gen-

eral due to the complexity of writing,
recording, editing, creating Foley, and
managing all of the audio files, but our
localization issues made it especially
challenging. Many problems were diffi-
cult to discover because of our lack of
knowledge of the various languages, and
we should have had more redundant test-
ing of the audio files by people who were
fluent in the specific languages.

4. Lengthy processing times.
One of our greatest frustrations

and loss of productivity came from our
slow turnaround time in making a
change to a level or animation and seeing
that change in the actual game.

Since all of our tools (including the
GOAL compiler) ran across our network,

we ran into severe network bandwidth
issues. Making better use of local hard
drives would have been a smarter
approach. In addition, we found extreme
network slowdown issues related to read-
ing file time/date stamps, and some tools
took several minutes just to determine
that nothing needed to be rebuilt. When
we compiled some of our tools under
Linux, we noticed dramatic improve-
ments in network performance, and we
are planning on using Linux more exten-
sively in our next project.

We implemented the processing of the
lengthy story-sequence animations as a
hack of the system used to process the
far simpler creature animations. Unfor-
tunately, this bad system caused lengthy
processing times, time-consuming debug-

P O S T M O R T E M

a p r i l 2 0 0 2 | g a m e d e v e l o p e r56

A frame from Jak’s victory animation displaced as IK, textured, and textured with color shading.

Color key for Forbidden Jungle. The game required two full-time conceptual artists for nearly
two years of production.

ging, and a lot of confusion. If we had initially hidden the
processing complexity behind better tools, we would
have saved quite a bit of time.

We used level-configuration scripts to set actor
parameters and other level-specific data. The script
processing was done at an early stage in our tools pipeline,
however, so minor data changes took several minutes to
process. We learned that tunable data should instead be
processed as close as possible to the end of the tools pipeline.

5.Artist tools. We created many tools while developing
JAK & DAXTER, but many of our tools were difficult to

use, and many tools were needed but never written. We often
didn’t know exactly what we needed until after several revisions
of our technology. In addition, we didn’t spend a lot of time
polishing our tools, since that time would have been wasted if
the underlying technology changed. Regrettably, we did not
have time to program tools that were badly needed by the
artists, which resulted in a difficult and confusing environment
for the artists and caused many productivity issues. Since pro-
gramming created a bottleneck during game production, the
added burden given to the artists was considered necessary,

though no less distasteful.
We lacked many visualization tools that
would have greatly improved the artists’
ability to find and fix problems. For
example, the main method artists used
to examine collision was a debugging
mode that colorized a small section of

collision geometry immediately surrounding Jak. A far better solu-
tion would have been to create a renderer to display the entire col-
lision of a level.

We created plug-ins that were used within the 3D modeling
package; however, for flexibility’s sake most of the plug-ins
operated by taking command parameters and outputting results
as text: not a good interface for artists. Eventually, one of our
multi-talented artists created menus and other visualization aids
that significantly improved productivity.

Many of our tools were script based, which made the tools
extremely flexible and adaptable; however, the scripts were often
difficult for the artists to understand and use. We are replacing
many of these scripts with easier-to-use GUIs for our next project.

The Legacy

C reating JAK & DAXTER was a monumental effort by many
hardworking, talented people. In retrospect, we were prob-

ably pretty foolish to take on as many challenges as we did,
and we learned some painful lessons along the way. But we also
did many things right, and we successfully achieved our main
goals. At Naughty Dog, there is a strong devotion to quality,
which at times can border on the chaotic, but we try to learn
from both our success and our failures in order to improve our
processes and create a better game. The things that we learned
from JAK & DAXTER have made us a stronger company, and we
look forward to learning from our past as we prepare for the
new challenges ahead. q

a p r i l 2 0 0 2 | g a m e d e v e l o p e r58

Front and side view drawings of the character are scanned, imported,
and used as blueprints for modeling.

P O S T M O R T E M

	return:

