MIDP 2.0 Changing the Face of J2ME Gaming -

Christopher Williams
School of Computing
Armstrong Atlantic State University
Savannah, Georgia USA

cwilliams@drake.armstrong.edu

ABSTRACT

Pervasive computing is coming to the masses. The tremen-
dous growth in cell phones and personal digital assistants
(PDAs) has resulted in a new platform for programmers.
Analysis of online sales records for these platforms shows
that games, specifically those using the Java 2 Micro Edition
(J2ME) in conjunction with the Mobile Information Device
Profile (MIDP), are the best sellers. Currently most con-
sumer devices use the MIDP 1.0 API which provides little
API support for gaming. As a result developers have been
forced to write their own game libraries which has led to
slow games with large distribution sizes. Recently devices
supporting the revised MIDP 2.0 specification have become
available. In this paper we analyze the benefits the new
API brings to game development and provide a short tuto-
rial which details the steps in porting a MIDP 1.0 game to
2.0.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign, Wireless Communication

General Terms

Languages, Design, Performance

Keywords
J2ME, MIDP, Pervasive Computing, Handheld Gaming, Java

1. INTRODUCTION

In the spring of 2002, Handheld and Ubiquitous Comput-
ing (HUC) was offered for the first time at Armstrong At-
lantic State University (AASU) thanks to a grant from the

*Supported by the National Science Foundation under
Grant No. 0127328 for Handheld and Ubiquitous Comput-
ing in the Undergraduate Curriculum.

Permission to make digital or hard copies of all or part of this work for

Mark Burge
School of Computing
Armstrong Atlantic State University
Savannah, Georgia USA

mburge@acm.org

National Science Foundation (NSF). The course[2] taught
students how to develop applications for handheld devices
using the Java 2 Micro Edition (J2ME) and the Mobile In-
formation Device Profile (MIDP) and led to the publication
of an undergraduate textbook on Pervasive Computing][3].

For the duration of the course each student received a
Palm OS PDA running MIDP 1.0 on which to develop and
test their applications. The first assignments for the class
presented students with many problems which had to be
solved within the constraints of the platform. The reduced
feature set of the Java 2 Micro Edition (J2ME) forced devel-
opers to remember that they were working in a more restric-
tive environment which necessitated new design and coding
procedures.

Students in the class learned how to design programs
which took into account limited memory, processing power,
and display space. One of the biggest challenges when pro-
gramming in the handheld environment is that of perfor-
mance. This was especially true in the domain of 2D gaming.
The programmer is responsible for providing the player with
as smooth and responsive a game as consumers have come
to expect. The introduction of MIDP 2.0 and the Game API
resolved many performance issues that had arisen in MIDP
1.0 where the programmer had to develop code for almost
every aspect of game play.

In the first section we look at the new classes and benefits
provided by the Game API. We then examine the first MIDP
1.0 gaming assignment from the course and show how to port
it to the new MIDP 2.0 Game API and finally we compare
the two versions.

2. MIDP 2.0 AND THE GAME API

The Game API provided with version 2.0 of the MIDP
provides developers with features geared specifically towards
gaming that were previously not available. The most im-
portant of these new features are collision detection, sprites,
tiled backgrounds, layers, and layer management. By imple-
menting this functionality natively, this package guarantees
developers that high performance implementations will be
available on all MIDP 2.0 enabled devices. This results in
both faster games and smaller distribution packages which

personal or classroom use is granted without fee provided that copies areare easier to transmit and store, important considerations
not made or distributed for profit or commercial advantage and that copies for handheld devices with limited resources.

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ACMSE’04 April 2-3, 2004, Huntsville, Alabama, USA.
Copyright 2004 ACM 1-58113-870-9/04/04%5.00.

37

New functionality is provided by five classes packaged un-
der javax.microedition.lcdui.game. The new classes pro-
vided in this package are GameCanvas, Layer, TiledLayer,
Sprite, and LayerManager.



2.1 GameCanvas

The GameCanvas class is an abstract class that extends
the basic Canvas class. It has additional features such as
sprites, background panning, layers, and an offscreen buffer
[1]. The main functionality provided by this class is the fact
that it gives the developer control over when the screen is
painted and when to respond to user input in the body of
the game. Previously you had little control over when the
virtual machine handled these events.

GameCanvas provides methods for “grabbing” the Graphics
object of the class, obtaining the current state of the device’s
keys, and for flushing the offscreen buffer once all opera-
tions on the screen have been completed. The Graphics
object can be accessed directly by using the getGraphics()
method. Any manipulation done on this object is stored in
an offscreen buffer which can then be copied to the screen
using the flushGraphics() method. This method is more
reliable than the system’s paint () method.

Another handy method provided by the Game API is the
getKeyStates() method. This allows the developer to use
direct polling of the device’s keys to obtain key presses in-
stead of waiting on the system to call its keyPressed() rou-
tine to determine user input. As will be shown later, this
helps to consolidate game action into a single loop instead
of being spread out over multiple code areas.

2.2 Layer

Layer is the abstract parent class of TiledLayer and Sprite.

It provides the basic attributes of a layer and allows for
complex scenes to be created and objects to be manipu-
lated independently of each other. By using layers, multiple
backgrounds and animated objects can be created and used
throughout the game. This class allows for objects to be
“stacked” on top of each other within the GameCanvas.

2.3 TiledLayer

The TiledLayer class provides developers with an effi-
cient manner of providing background images for games.
Developers may provide a single source image which can be
partitioned to form a set of tiles used to form complex back-
ground images. The constructor for TiledLayer allows the
programmer to specify the size and number of tiles, along
with the source image to be divided. Once this TiledLayer
has been created, the background can be populated by us-
ing the setCell() method. setCell() takes, as parameters,
the column, row and tile number to be placed for the back-
ground. Using this arrangement, a fairly complex scene can
be created from a single image file with a minimal number
of tiles.

2.4 Sprite

Modern games require characters that have, at the least,
movement, animation, and collision detection. The Game
APIT provides this functionality through the Sprite class.
The creation of a Sprite is similar to the method of con-
structing TiledLayers. The constructor is passed an Image
object along with the width and height of the frames in the
image. The instantiation of this object creates a frame se-
quence by using the frame sizes specified in the constructor.

The sprite object can then be animated by using the
nextFrame() and prevFrame() methods. These methods

treat the frame sequence as a circular loop; calling nextFrame ()

on the last frame in the sequence will set the current frame

38

to the first item in the sequence. Specific frames in the
sequence can also be called with the setFrame(). In addi-
tion to the ability to change frames, the actual frame se-
quence can be changed by passing an integer array to the
setFrameSequence () method. It should be noted that frame
changes only become visible the next time the Sprite is ren-
dered.

Another powerful aspect of Sprites is the ability to per-
form transforms and set reference pixels. The ability to
transform sprite objects is important in gaming. This allows
developers to specify source files with a minimal amount of
frames, and then transform the different frames to repre-
sent multiple states for the object. These transforms are
constants in the Sprite class, and follow a general pattern.
For instance, applying the transform TRANS_MIRROR_ROT180
will mirror the current frame vertically, and rotate it 180
degrees.

Some behavior that should be noted is that the transform
is applied to the Sprite object while the reference pixel stays
in the same location. This pixel defaults to the upper left-
hand corner of the frame image. This could lead to jerky or
incorrect movement, and for some animations, developers
should invoke the setReferencePixel() and redefine the
reference pixel to be the center of the sprite. This allows for
rotation to be done around the perceptual center axis of the
sprite.

2.5 LayerManager

The LayerManager class arranges all layers being used
by an application and manages the rendering of the lay-
ers based on the view window set by the developer. Lay-
ers can be insert ()ed at a specific index, which renumbers
existing layers as necessary, or append()ed to the existing
set of layers. The lower the index number, the closer the
layer is to the viewer. The LayerManager class also has a
setViewWindow() method that allows the developer to spec-
ify a starting x and y coordinate, and a width and height
for the portion of the canvas displayed to the user. This
allows developers to create large scrolling backgrounds, or
to restrict the user’s view of the screen, possibly to allow
extra elements, such as scores or timers, to be added to the
screen.

3. SHIP CHASE GAME ASSIGNMENT

The requirements of the Ship Chase assignment were to
build a game that featured two ships. One of the ships,
the foe, was to move randomly across the board, controlled
by the computer. The other was user-controlled, and its
goal was to “catch” the foe ship. “Catching” the foe ship
basically meant forcing a collision between the two. In this
section, we will look at the basic differences between the
MIDP 1.0 and MIDP 2.0 implementation of the game.

3.1 MIDP 1.0 Implementation

Using MIDP 1.0 to develop this game presented a few
challenges. Design-wise, there had to be multiple threads,
in this case implemented using TimerTasks, to detect colli-
sions, determine frames per second, and to randomly move
the foe ship. Along with these TimerTasks, there was also
the main body of the program which had to be running as
well. The extensive use of concurrent threads made per-
formance a big issue and therefore, not much time could
be devoted to the actual drawing of the ships. Drawing



N O Ol A

0

[Tt ED

Figure 1: The MIDP 1.0 game.

the ships was accomplished using a ShipCanvas class which
contained a nested inner Ship class. Finally, there was a
ShipMidlet class which created and controlled the inner
TimerTasks classes used in the application to provide the
other features necessary to the game'. Figure 1 shows the
results of having to concentrate soley on efficiency and is
typical of many MIDP 1.0 games. The graphics are very ba-
sic, and lacks many of the features most people have come
to expect from games.

3.1.1 Ship Animation

Game speed necessitated that the ships be created by
drawing directly on the canvas using simple graphic prim-
itives. An illusion of animation was provided by calculat-
ing the ships’ direction at each frame and ensuring that it
pointed in the correct direction.

1| public void draw(Graphics g) {

int tailDirection =
% 360;
leftTail =
% 360;
int currentColor =

(noseDirection + 180)
int (tailDirection — TAILANGLE)

g.getColor () ;

g.setColor (color);
g.fillArc (x — HALFWIDTH, y — HALFHEIGHT,
WIDTH, HEIGHT, leftTail ,
TAILANGLE) ;
g.setColor (currentColor);
}

3.1.2 Ship Collision Detection

Collision detection was implemented by running a TimerTask

and checking every half-second if the two ships had collided

'Source code for this implementation can be downloaded at
drake.armstrong.edu/~cwilliams/j2me/gaming/.

39

[

© 0 N O s W N

e e
B W N = O

15

16

B N =

with each other. If a collision was detected, all running
TimerTasks were cancelled.

public class CheckWinTimerTask extends

TimerTask {
public void run() {
if ((ship.friend.x < ship.foerightx) &&
(ship.friend .x > ship.foeleftx) &&
(ship.friend .y < ship.foebottomy) &&
(ship.friend.y > ship.foetopy)) {

System.out.println ("CAUGHT!");
ship.caught = true;

if (ship.caught == true) {
fpsTimer . cancel () ;
foeTimerTask . cancel () ;
checkWinTimerTask . cancel () ;

}

3.2 MIDP 2.0 Implementation

The new Game API delivered with MIDP 2.0 not only
allows developers to produce games rapidly, but also con-
sistently. The purpose of porting the Ship Game was to
not only show how code complexity was reduced, but also
to show how reusable and organized the code can become.
To show code generality, the decision was made to take Sun
Microsystem’s muTank? example and modify it to fit our
needs. The transition from the MIDP 1.0 implementation
to the MIDP 2.0 implementation was a smooth one. Much
of the functionality that had to be programmed into the first
version was now natively available. This made development
quick, and the code much easier to understand. As shown
in Figure 2, the most obvious difference is simply how much
better the game looks. An overview of the code will show
other subtle differences between the earlier version and the
code done with the Game API.?

All code was now logically split into three files. The
ShipCanvas class handled the creation of all objects that
were going to be on the screen during gameplay, user input,
and most importantly, the main game loop. The ShipMidlet
class sets up the actual MIDlet, but does nothing more
than create a new instance of the ShipCanvas. In the first
version of the game, the ShipMidlet class took care of all
collision detection and frames per second calculation. The
ShipSprite class handles all movement and animation of our
sprites, provides methods for collision detection, and also
“warps” the ships when they reach the edge of the screen.

3.2.1 Ship Creation

The background tiled image, and the actual ship sprites
used in the game are created in two methods inside the
ShipCanvas class as follows.

private ShipSprite createShip (int type)
throws IOException {
String shipImage;

ShipImage =] (type == ) ? "/Ship'png" [y
ship2.png";
2Source code for this application is available at

wireless.java.sun.com/midp/articles/game/src/muTank.zip

3Source code for this application is available at
drake.armstrong.edu/~cwilliams/j2me/gaming.




N O G

© 0 N o W N =

Figure 2: A screenshot of the updated game in progress.
A A 2

Figure 3: The source files for the ship sprites.

Image image = Image.createlmage (shipImage) ;
return new ShipSprite (image, 32, 32);
}
private TiledLayer createBoard ()
throws IOException {
String backIlmage = "/stars.png";
Image image = Image.createlmage (backlmage) ;
TiledLayer tiledLayer =
new TiledLayer (12, 12, image, 16, 16);
tiledLayer. fillCells (0, 0, 12, 12, 1);
return tiledLayer;
}

3.2.2 Ship Animation

As discussed in Section 2.4, character animation using
sprites is done by having a source image with frames. Fig-
ure 3 shows the actual source images that were used to create
the ships. The ShipSprite class contains transform arrays,
from the original muTank source code that keep the ship

40

11

12
13
14
15
16
17

18
19
20
21

© 0 N O Ok W N e

I T S T
B W N = O

15
16
17

image and orientation correct as the user moves the charac-
ter. Collision detection is also provided by the Sprite class
and is checked as part of the main game loop.

public void run() {

Graphics g = getGraphics () ;

int timeStep = 50;

while (active) {
long start = System.currentTimeMillis () ;
checkShips () ;
moveFoe (ship2);
checkInput () ;
ship . checkBounds(canvasHeight , canvasWidth)
ship2.checkBounds (canvasHeight , canvasWidth

)
render (g);
long end = System.currentTimeMillis () ;
int duration = (int)(end — start);
if (duration < timeStep) {
try { Thread.sleep (timeStep — duration)
catch (InterruptedException ie) {}

}

}

}

The most important thing to note about this change is
that all functionality is contained in this singular loop. In
the previous version of the game, the developer was never
sure when system threads would return, or perform actions
that were requested. As noted earlier, the entire Graphics
object is grabbed with the invocation of the getGraphics()
method. The game then enters a continuous loop which first
checks for collisions, then randomly moves the “foe” ship,
checks for user input, warps ships if necessary and finally
calls the render () method. All graphics changes are written
to the offscreen buffers, which is then copied to the current
display with the call to flushGraphics().

void render (Graphics g) {
getWidth () ;
getHeight () ;

private
int w
int h

g.setColor (0 xffffff);
g.fillRect (0, O, w, h);

(w — 160) / 2;
(h — 160) / 2;

int x
int y

shipLayerManager . paint (g, 0, 0);

g.setColor (0x000000) ;
g.drawRect (0, 0, getHeight (), getWidth());

flushGraphics () ;

3.2.3 Ship Collision Detection

Collision detection moves from a complex if statement
with multiple conditions, to a single conditional statement.
The collidesWith() method can also be used to detect col-
lisions with background objects.

1| private void checkShips () {

2

if (ship.collidesWith (ship2, true)) {




B

o o

MIDP 1.0 MIDP 2.0

Source files 2 3

Size * 7 KB 17 KB (12 KB of images)
FPS* 7-45 fps ° Set by developer

Table 1: Comparison of Implementations

ship .undo () ;
stop () ;

3.2.4 User Input

User input is handled by taking advantage of the fact that
device key states can now be polled instead of waiting on
the system to detect key presses. A call to getKeyStates()
returns an integer that denotes which key on the device was
pressed.

private void checkInput () {

int keyStates = getKeyStates () ;

if ((keyStates & LEFT_PRESSED) != 0)
ship.turn(—1);

else if ((keyStates & RIGHTPRESSED) != 0)
ship.turn(1);

else if ((keyStates & UP_PRESSED) != 0)
ship . forward (5) ;

else if ((keyStates & DOWNPRESSED) != 0)
ship . forward (—=5);

All code samples in this section came from the ShipCanvas
class. Asopposed to the MIDP 1.0 implementation, all game
logic is contained in one class and all behavior logic of the
ships are contained in the ShipSprite class. This allows for
a cleaner and more understandable code base. Other devel-
opers can take advantage of this and reuse large portions of
code to rapidly develop quality 2D games.

4. CONCLUSIONS

The release of MIDP 2.0 and the Game API has simpli-
fied the process of developing 2D games for mobile devices.
The addition of a game canvas, collision detection, sprites,
tiled layers and layer management allows for developers to
concentrate on developing fun, pleasing, and efficient games.
The implementation of these features into the micro edition
ensures that developers will have this functionality available
to them on any MIDP 2.0 enabled device. This not only cuts
down on application file size, but also on incompatibilities
introduced by programmers trying to solve many of these
issues by coding their own solutions under MIDP 1.0.

3Packaged .jar file
4Frames per second
57 fps on a 1.4 GHz machine, 45 on a dual 3.06 GHz machine

41

As shown during the porting of the old game, code is
much cleaner and more organized when using the new Game
API. The difference in aesthetics is remarkably noticeable
between the two versions. The addition of the GameCanvas
class allows for a single loop that controls all aspects of the
game from painting the screen to detecting and handling
user input. Collision detection has been moved from using
TimerTasks to a method in the Sprite class.

Operations that the programmer were previously respon-
sible for are now built into MIDP 2.0. The new API also
shows that a basic game can be modified to fulfill the re-
quirements of other designs. The completed Ship Chase
game could just as easily be modified into yet another game
without requiring a developer to start from scratch. These
new features allow for rapid and consistent game develop-
ment for mobile devices.

As seen in Table 1, there are now 3 source files in the
MIDP 2.0 implementation, but there is a more definitive
separation of logic and presentation. The code is more gen-
eralized and reusable when compared to the original imple-
mentation of the game. The size of the packaged jar file is
larger because of image files that are included, however, the
actual code is around 2KB less than the MIDP 1.0 imple-
mentation. The extra space for images allows for a more
refined and professional looking game. Finally, the speed of
the game is more platform independent since the developer
can set the frame rate in the new version, while the MIDP
1.0 implementation is reliant on how the device’s virtual
machine process instructions.

5. ACKNOWLEDGMENTS

The authors would like to thank Brian Talley for his con-
tributions to the original implementation of the Ship Chase
game.

6. REFERENCES

[1] C. Bloch and A. Wagner. MIDP 2.0 Style Guide for the
Java 2 Platform, Micro Edition. Addison-Wesley, 2003.

[2] M. J. Burge. A handheld and ubiquitous computing
curriculum. In Proc. 41st Annual ACM Southeast
Conference, pages 2224, Savannah, GA, 2003. ACM.

[3] M. J. Burge and Y. D. Liang. Java Micro Edition
Programming. Prentice Hall, to appear in 2004.



