

Issues Related to Mobile Multiplayer Real-time Games over Wireless Networks

Alf Inge Wang, Eivind Sorteberg, Martin Jarrett
Norwegian University of Science and Technology

alfw@idi.ntnu.no, sorteber@idi.ntnu.no, martinja@idi.ntnu.no

Anne Marte Hjemås
Telenor Research & Innovation
anne-marte.hjemas@telenor.co

ABSTRACT

Most recent released PC and console games offer
multiplayer online support where players can compete or
cooperate in real-time. However, very few games on
mobile phones provide multiplayer support other than
shared high score lists. This paper describes problems
game developers have to face when developing real-time
multiplayer games for mobile phones. Typical problems
the developer has to deal with are incoherent
representation of players' positions, jagged player object
movement, missing collision detection between player
objects and background, and wrong or missing collision
detection between player objects. The paper describes the
mobile multiplayer real-time game BrickBlock, which was
developed to investigate the performance issues related to
multiplayer games played over the wireless networks.
Further, we describe our approaches to solve network
latency problems in the game, which made the game
playable even over networks with high latency.

KEYWORDS: Mobile and Wireless Collaboration
Systems, Multiplayer real-time games.

1. INTRODUCTION

Online games like World of Warcraft [3] have become
very popular with more than 9 million paying subscribers
around the world (2007). Many new games support some
kind of online functionality, and many online multiplayer
gaming. This trend has also reached mobile gaming, but
mostly on mobile game consoles like Sony Playstation
Portable and Nintendo DS. On mobile phones, there are
few online multiplayer games. Some examples are Pirates
of the Caribbean, Samurai Romanesque [9], and Tibia
Micro Edition. The online multiplayer games for mobile
phones on the market today are either turn-based games
or slow-paced games to avoid problem with the latency
and low bandwidth of wireless networks. Such games can
live with network response time up to 0.5 to 1 second
without ruining the game play. However, real-time
multiplayer games require much lower response time if

the games should be fun to play. In such games, it is
required that the movements and actions of all the players
in the game are updated on all mobile devices many times
per second. Especially, in games where collision detection
is involved, it is critical that the player events are
distributed to all clients frequently to be able to detect
crashes or direct contacts between objects in the game.
The update frequency of player events depends on the
game genre. For instance, fighting games require high
game event update frequency compared to strategy games.
In addition to response time, transfer bandwidth is critical
for multiplayer games. The network performance of
multiplayer mobile games must also be scalable so many
players can play simultaneously.

In the project MObile and Social gameS (MOSS), the
goal is to explore the opportunities of developing mobile
multiplayer real-time games for mobile phones. In the
first phase of this project we wanted to assess the
limitations of existing wireless networks when used to
play multiplayer real-time games. The wireless networks
we consider are the mobile networks available in Norway:
GPRS, EDGE, UMTS (3G), and WLAN (Wifi). From
experiences on mobile consoles we know that WLAN
works well for real-time multiplayer games, so we wanted
to include WLAN in our tests as a benchmark. As only
high-end mobile phones provide support for WLAN,
other wireless networks are considered to be more
important for multiplayer gaming on mobile phones.

This paper describes the mobile multiplayer real-time
game BrickBlock, which was developed to investigate the
performance issues related to multiplayer games played
over the wireless networks. BrickBlock is a game where
players must collaborate and compete to win. The paper
describes problems and solutions relevant for visual real-
time collaborative systems with mobile clients. It
investigates how much of the coordination of the system
should be managed by the server and how much by the
clients. Further, we describe our approaches to solve
network latency problems in the BrickBlock game, which
made the game playable even over networks with high
latency.

2. A MOBILE MULTIPLAYER GAME

2.1. The Game Concept

In BrickBlock, each player controls his brick around a
two dimensional playfield. The goal of the game is to
push other players into certain areas defined as traps.
When a player is pushed into a trap, he dies, looses points,
and respawns. The winner of the game is the player that
has died least number of times within a limited time. This
concept opens for tactical play, as the players most likely
will have to find other players to cooperate with in order
to push and block other players. Further, such alliances
will have to be temporary for one player to become the
winner of the game. Ambitious players will most likely
jump from one alliance to another several times during a
game session to make sure they are always in the best
position for the victory. In other words, BrickBlock is a
game characterised by its anarchy, chaos, and treachery -
attributes that makes it an entertaining, unpredictable and
social game.

Figure 1. Illustration of the BrickBlock Game

An illustration of the game is shown in Figure 1. When
the game starts, the strength, size and speed of the players'
bricks are equal. This will change when a player
consumes one of power-ups. The Speed power-up gives
the player increased speed making it easier to avoid other
players and to pick up other power-ups. The Size power-
up increases the size of the player's brick making it easier
to pick up more power-ups and easier to push other
players, but it also makes it easier to hit traps. The
Strength power-up increases the player's strength making
it easier to push other players around.

2.2. Real-time Game Challenges

The BrickBlock game concept was developed to create a
game with very high real-time requirements for a game
played over a wireless network. The aim was to create a
game that would reveal gameplay issues related to
network lag and low network bandwidth: 1) It is critical
that the positions of the players (the bricks) are correctly
reproduced on all the players' screens, as how bricks are
positioned on the play area is critical to the gameplay; 2)
It is critical to detect when a brick (see Figure 1) hits the
walls limiting the play area; and 3) It is critical to detect

when two or more bricks collide to correctly move the
bricks according to the involved physical forces.

From preliminary tests running the game over a GPRS
wireless network with long latencies (0.6 secs), we
noticed a number of problems: First, the position of the
same brick was different on different players' screens. As
such, the players did not have one coherent representation
of game world. When watching several mobile screens at
the same time, it did not look like the players played the
same game, as the network lag could not cope with the
movement of the involved players. Second, in the first
version of the game, the wall detection was performed on
the server to minimise the load of the mobile device.
Unfortunately, in some cases the server did not discover
when a brick hit the wall in time, and the brick would
float outside the play area (unstable state of the game).
Third, the most noticeable problem was inaccurate
detection of collisions between players (bricks). This
problem cannot simply be solved by doing the collision
detection locally as all the players involved have to be
taken into account. In some cases, players could simply
run over other players without any collision detection at
all. In other cases, bricks were pushed around when it
looked like they did not collide or the bricks ended up on
top of each other. The latter should not be an allowed
state of the game.

To avoid these problems, all the mobile clients must be
updated over the wireless network frequently so they all
have the same representation of the game. How frequently
the data must be exchanged between the server and the
clients depends on how much the players are moving the
bricks around, and the screen framerate of the game.
Ideally the data exchange update rate should be equal to
or above the framerate of the screen. The screen framerate
of a game depends on the kind of game and the kinds of
movement on the screen. If objects move very fast on the
screen, the framerate should be higher. A game like
BrickBlock does not require a framerate above 10 frames
per second, which means that the data should ideally be
exchanged more than 10 times per second.

To investigate whether mobile multiplayer real-time
games can perform well over existing wireless networks
we performed some network performance tests. The
results from the tests showed that the expected latency for
game updates using the GPRS or EDGE is 0.5-0.6 secs,
0.3 secs for UMTS and 0.09 secs for WLAN. The rest of
this paper will describe issues and solutions to minimise
the effect of the network latency on the gameplay.

3. ISSUES RELATED TO COLLISIONS

Collisions are one of the most important aspects in nearly
all computer games with moving objects. For shooter

games, collision detection is needed to detect when the
players shoot each other or run into each other. For classic
games like Tetris, collision detection is needed to stop the
bricks in the correct position. Even in games where
collisions do not have immediately visible effects, like
simple driving games, collision detection is needed for
example to detect when the driving surface changes, i.e.
when the car goes off track and onto grass.

In BrickBlock, the need for collision detection and
handling is obvious. Without collision detection, pushing
other players is impossible, and nothing will happen if the
players move across a trap. This section discusses the
different situations where collision calculations are
needed, and whether these calculations are better handled
on the server or on each client.

A collision in BrickBlock occurs when a part of a player's
brick touches another object or a wall. This can happen
when a player moves his own brick into the other object
or wall, or when he is pushed. There are four main causes
for collisions: collision with walls, power-up objects,
traps, or other players. In the following, each of these
cases is discussed, and we propose some approaches for
detecting the collisions.

3.1. Collision With Walls

Wall collisions occur when a player's brick moves to a
position where it is partly or completely located outside
the game board. This happens either when the player tries
to move to this position, or when another player pushes
him to this position. The first case is quite simple to detect,
as this only requires checking if the next move causes the
brick to end in an illegal position. If so, the move is
disallowed. Since this is such an easy case of collision
detection, self-caused wall collisions should definitely be
handled locally on each client. Figure 2 illustrates this
situation.

Figure 2. Self-caused Wall Collisions

The other case of wall collision is a little more complex,
as this involves interaction with another player. Several
possible solutions are possible for this situation. Firstly, a
similar approach as mentioned above can be used: If
pushing a player results in that the other player is placed
in an illegal position, the move is disallowed. However,
the problem with this solution is that the approximated
position of the pushed player is not necessarily

completely correct, because of the latency of information
transmissions. A move towards a wall may therefore be
incorrectly disallowed, because a player that is not
actually there is detected to be standing in the way.

Another solution is allowing such a move, and only
checking the local player's position against the wall. In
this case, a player may actually be pushed outside the wall.
Such situations need to be detected and corrected either
by the client of the pushed player or the server. In both
cases, the simplest solution for such events is transmitting
a new position for the pushed player so that he is placed
back in a valid position. If this is done by the server, the
only client visibly affected by this action is the player that
pushed, as the pushed player will be moved to another
position shortly after the push occurred. If it is done by
the pushed player, all clients will be visibly affected, as
they first receive a notification that a player has been
pushed, and a corrected position shortly after. But the
advantage of this last solution is that this detection is
already mostly done by the calculation of self-caused wall
collisions. A three-step illustration for this situation is
shown in Figure 3.

Figure 3. Externally Caused Wall Collision

Unfortunately, as the figure shows, both the solutions
involving correction when a collision is detected is likely
to result in players being placed on top of each other
when the pushed player is returned to a legal position.
Thus, the mentioned drawback of the first solution can be
accepted and let wall collisions be detected by the
pushing player. The result of this solution is that step 2
and 3 of Figure 3 are detected and stopped before they are
executed.

3.2. Collision With power-up Objects

Another type of collision detection is collisions with
power-up objects. When such an event occurs, the power-
up needs to be removed from the game board, and the
player's attributes need to be updated for all participants.
Like wall collisions, there are several solutions for this
kind of collision detection, all of which have both
advantages and disadvantages.
The simplest solution for detecting power-up collisions is
to utilize the sprite collision available in MIDP 2.0. This
can only be performed by the local client, or it can be
performed by all the clients each time a player moves.
However, performing a collision detection every time a

player position is received on all clients requires quite an
amount of processing. This is not desirable for a game
designed for mobile phones, and should be avoided when
possible. Furthermore, since information from one client
takes some time to be distributed to the others, the player
may see the power-up on their local screen for some time
after another player has picked it up. This may lead to
several players picking up the same power-up object.

Another possibility is comparing the player's position
with the position of the power-up objects on the server
whenever a position update is received. A server is
normally far more powerful in terms of resources than a
client, but this solution leads to visible delay for the
players, as the collision with the power-up will not be
registered before a little after the actual collision. The
game should offer feedback to the player when colliding
with a game object, such as vibration or flashing lights. If
the collision detection is performed on the server, this
feedback is likely to appear too late.

Hence, there appears to be a choice between saving the
client for these calculations and ensuring that only one
player can pick up a power-up, and introducing a lag that
can be avoided. However, the two solutions can be
combined into a solution that both ensures only one
player picking up a power-up, as well as immediate
feedback to the player. In this solution, the collision
detection is performed locally on the client, as in the first
solution, and the phone flashes and/or vibrates if a
collision is detected. However, instead of immediately
increasing the player's attributes, a notification that the
player has collided with the power-up is transmitted to the
server. The server then checks if the power-up has been
picked up by any other players. If not, the server notifies
all connected players that player X has picked up a
power-up object, and has increased one of his attributes.
All clients must then remove the power-up object from
the game board once they receive the notification.

This solution still contains the problem of introducing
more collision calculation on the client. However, in this
case, the extra processing is worth the cost, because of the
increased immediateness of the game. Thus, the detection
of power-up collisions should be performed locally on the
player's client when he moves. When a power-up collision
is detected, a notification is sent to the server, and if the
pick up is approved, the notification is forwarded to all
connected players.

3.3. Collision With Trap
A trap collision occurs when a player collides with the
trap object on the game board. This will usually happen
when the player is pushed by other player(s) into the trap,
but it can also happen if the player is unlucky and moves
himself into the trap. Both of these cases are similar to the

power-up collisions discussed in the previous section, and
are best handled by using the built-in support for collision
detection in MIDP 2.0. Trap collisions and power-up
collisions are therefore detected equally and at the same
time on the local client.

The problem with several players colliding with the trap
at (close to) the same time does not apply to trap
collisions as with power-up objects. There is no rule
against several players dying at the same time. However,
when a player dies, he needs to be moved to an
unoccupied corner on the game board. This involves
traversing the player list and comparing the players'
positions to the possible new position of the player. In
itself, this operation is much like the collision detection
already performed on the client. However, if several
players die at the same time, all of these players need to
be moved to an available corner. Because of the network
latency, the new positions may be generated, and the
players moved to the corner, before the other player's new
positions are received. Hence, two or more players may
be placed in the same corner if the respawning position is
generated on the clients.

Due to this problem, collisions with traps are handled in
the exact same way as collisions with power-up objects. If
a player collides with the trap, his phone flashes and/or
vibrates, and a collision notification is sent to the server.
The server then generates the player's respawning position,
as well as the player's new score, and transmits this
information to all players.

3.4. Collision With Other Players

Like collisions with power-up objects and traps, collisions
with other players are quite simple to detect using Sprite
objects. However, power-up objects and traps have
constant positions and do not continuously move around
on the game board like players do. As mentioned
previously, it is impossible to have a completely correct
overview of exactly where all the players in the game are
at all times. This makes player collisions harder to detect
correctly than collisions with other game objects, and
even more difficult to handle.

The simplest case of collision detection and handling
between two players is when one of the players is
standing still while the other is pushing. In this case, the
collision detection is similar to game objects. The position
of the pushed player can then simply be updated by letting
the pushing player send a message that says that the
player has been pushed to a new position.

But when both players move at the same time, the
situation is more complex because of the network latency.
This may result in three different situations.

Figure 4. Player Collisions with Simultaneous Movement

Figure 4 illustrates these situations for collisions between
two players, but the same is true if three or more players
collide. The left image of each case shows a possible
representation of the player positions, whereas the right
image shows the actual positions of the players. The three
situations illustrated in the figure can arise when: 1) An
existing collision is not detected because both players
have moved into the same area, but the position of at least
one player has not yet been received, 2) a non-existing
collision is detected because both players who were in the
same area have moved away, but the position of at least
one player has not yet been received, and 3) an existing
collision is detected, but it is not completely correct since
the position of at least one player has not yet been
received.

The first case may result in two players occupying the
same board position for a short period of time, until the
new position has been received and the collision is
detected. However, this is not very problematic, as the
only time this happens is when the players touch very
briefly, and does not try to push each other. The second
case is the exact opposite of the first, and may in some
situations be more problematic. The consequence of this
case can be that a player is pushed even though he has
actually managed to get away from the pushing player. If
this happens close to the trap, the player may
unintentionally die. However, like in the first case, the
correction will occur fast enough that we do not judge this
latency to be a critical issue. For the third case, there is no
consequence for how the players experience the game. A
collision is a collision, and whether this collision occurs at
the edge of or at the centre of the brick, the result is the
same. A collision has occurred, and the strongest brick
moves the other in the strongest player’s movement
direction.

As previously mentioned, the server contains the most
accurate approximation of the game state in sum, but each
client contains the most accurate representation of its own
state. This means that a collision that is detected on the
server is more likely to be correct than one detected on
the client. On the other hand, this solution introduces a
visible latency to the game. The player will see that he
collides with another player, but the effect of this collision
will not register until the server has received the player's
new position, detected the collision, and returned a
collision notification. In other words, the player will

experience that he is moving a bit over the other player
before the collision registers and the bricks start pushing
each other. Because of this, and since the consequences of
a little inaccurate collision detection are not too critical,
BrickBlock lets each client be responsible for detecting
collisions with other players.

 4. HANDLING PLAYER COLLISIONS

When collisions between players are detected, these
detections have to be handled so that the correct actions
are taken. In BrickBlock, the results of such collisions are
change of speed and movement direction for at least one
of the players. For such events, several factors need to be
calculated. First, the strength ratio between the players
involved in the collision needs to be calculated. If one of
the players is stronger than the other, the strongest player
will be able to push the other in the strongest player’s
movement direction. How much the player can be pushed
depends on the strength ratio between the players, as well
as the movement speed of the strongest player. If the
strongest player is 50% stronger than the weakest, and the
speed of the strongest player is 2, the weakest player will
be pushed with a speed of (0.5x2 =) 1. Since the players
are pushing each other, the contact will be maintained,
and the strongest player will also move with a speed of 1.
Like the other elements discussed in previous section,
collision handling may also be handled both server and
client side. While the server has the advantage of plentiful
processing powers, performing calculations on the client
often leads to a more responsive game from the player's
point of view.

In the case of player collisions and force movements,
collision handling on the server profits from its more
accurate world model compared to the pushing player,
when it comes to calculating the new position of the
pushed player. When the server is notified that a collision
has occurred, it is able to calculate the new positions of
both the pushing and the pushed player with relatively
accurate values. However, the problem of visible delay on
the involved clients once again arises. Both players will
be able to move forward for a short time while the server
is waiting for the collision notification, and when the
server transmits the new positions, the players will
experience that they are moved backwards seemingly
without reason. This situation is illustrated in Figure 5.
The figure shows a step-by-step procedure of how

Figure 5. Server-side Collision Handling

Figure 6. Client-side Collision Handling

calculations will be performed and messages transmitted
when the server is responsible for handling player
collisions. Where several boxes are placed over each
other, the actions are performed in parallel. As the figure
shows, the redrawing of positions happens first in step 5
on the local client. Two of these steps consist of
transmission between server and client, and with a slow
network, it is easy to understand that this solution
involves significant delay for the players.

The other solution is letting the pushing player have
responsibility for calculating the results of the collision. A
step-by-step illustration of this solution is shown in Figure
6. Here, we see that the redrawing of the players happen
already in step 3. Furthermore, no message transmission
is necessary before the game board is updated. This will
lead to a far more responsive game from the player's point
of view.

As mentioned previously, it is likely to be a deviance
between the other player's real position and its perceived
location on the local client. Calculating the new position
of the pushed player and transmitting this position may
lead to the same problem with seemingly unnatural
position corrections. However, an improvement can be
achieved by letting the pushing player transmit a
movement vector instead of a static position. With this
solution, the pushed player will not be reset to a previous
state, but rather corrected with an amount corresponding
to the strength ratio between the players and the speed of
the pushing player. The procedure for detecting and
handling player collisions on a client can then be carried
out as described in Figure 7.

The movement vector solution could also be used at the
server, and will reduce the problem of position

corrections. However, the problem with responsivity still
remains. When a player collides with another player, he
expects one of the players to be forced by the other player.
With server-side collision handling, there will be a
noticeable delay before this happens.

Due to the latency in the network, a player may
experience to be pushed without contact between the
players displayed on his phone. Also, there may be
situations where a push should occur, but does not. This is
equal to the situations illustrated in Figure 4. With client-
side collision handling, these situations will occur more
often and with larger deviations than when performed on
the server. However, such situations will be a smaller
source of irritation than the delay associated with server-
side handling. As a consequence, collision handling is
performed on each client when a collision is detected.

5. GAME CONTROL ISSUES

In addition to collisions, running the game itself requires a
number of calculations that must be performed throughout
the game session. The state of the game is constantly
changing, and events occur both because of player
interaction and because of the game's inherent behaviour.
This section presents and evaluates the most significant of
these events.

5.1. Power-ups

Power-up objects in BrickBlock are generated with
random intervals. To keep track of these intervals, the
power-ups should be generated by one of the devices in
the network. In a peer-to-peer version of BrickBlock, the
game initiator was appointed as game master, and had the

Figure 7. A Procedure for Handling Player Collisions

responsibility for power-up generation. However, using
the same approach in a client-server network with
relatively high latency may give the game master an
advantage compared to the other players. He will see the
power-ups once they are generated, while the other
players must wait for the notification.

A better solution is to let the server handle power-up
generation. Some latency is still involved, and
participants with slow connections may receive the
notifications a little later than others. This was also the
case in the former. In addition, none of the clients need to
use their valuable resources for power-up generation, but
delegates this responsibility to the far more powerful
server.

There are two possible scenarios that cause the removal a
power-up object from the game board. The first is when
the power-up times out without having been picked up by
any of the players. This is quite similar to generation of
power-ups, and should be handled by the server for the
same reasons. The second is when power-up objects are
removed when a player picks up a power-up. This event
was discussed earlier in this paper, and the conclusion
was that the clients should themselves detect when they
collide with a power-up object. When such an event is
detected, the client sends a notification to the server,
requesting permission to activate the power-up. If the
request is approved by the server, this power-up
activation is forwarded to all players, along with the
attribute increment provided by the power-up object. The
clients are then responsible for removing the power-up in
question from the game board.

When a power-up has been activated, it remains active for
the player for a set time interval. Detection of when a
power-up is deactivated is also a task that can be
performed both server and client side. However, if this
detection is performed client side, the exact same
calculation has to be performed on every one of the
clients. Of course, each player can be responsible for his
own power-ups and send a notification when a power-up
times out. Still, this check has to be run rather often, and
will occupy more of the mobile phones limited resources.
If this check is performed on the server, it only has to be
performed each time the active power-ups are checked.
Since the server also has the most available resources,

detection of timed out power-ups should be performed on
the server. Hence, the server runs through all the active
power-ups for all the players with set intervals, and if a
power-up deactivation is detected, a notification is sent to
all players, who then set the affected player's attributes
accordingly.

5.2. Game Settings

To give all the players a feeling of being equally involved
in the game, it is important that all players have the same
opportunity to change the settings of the game. Examples
of such settings are how long a game should last, how
many players are allowed in the game, or possible score
limits. Changing such settings should naturally be
performed on the local client, and the changes in settings
should then be transmitted to the other players through the
server.

However, the control of these settings can be
implemented in various ways. In a peer-to-peer Bluetooth
version of BrickBlock, the game master was responsible
for handling these settings, and detecting whenever a
change in the game occurred (such as a time-out or
reached score limit).

This solution is also possible to use for the server-client
architecture, by letting the game initiator be game master.
The problem with this approach is the latency discussed
previously. But for this kind of events, this latency is not
critical. It is not critical if a game finishes a little bit
earlier for one player than for another.

Another client-based approach for this kind of events is
letting all the clients be their own game master. All the
clients have control over the different settings, and if a
limit is reached, the game is simply closed locally.
However, both of these client-based approaches require
some background calculations. Even though these
calculations are not very demanding, a server-based
approach is not in any way worse, and in addition, frees
the client from having to perform the calculations.

A server-based approach to this task requires the server to
have a complete model of the game, such as player scores,
number of players in the game, and time elapsed. Some of
these elements are naturally stored on the server (such as

players connected to the game), whereas others can be
implemented with a minimal amount of effort. In this way,
the server can continuously check the state of the game,
and (close to) immediately send a ``game over''-
notification when the game should be ended. As
mentioned, this takes some calculation load off the clients.
Furthermore, like with power-up objects, this approach
reduces the small downside of delayed ``game over''-
notifications mentioned for the game master client-side
approach.

6. EXPERIENCES

Our experiences from running BrickBlock showed that
the game was playable even over GPRS and EDGE
networks and that our measures for limiting latency issues
mostly works well. However, there were some issues that
will be presented in this section.

In BrickBlock we use a simple movement prediction
where each player simply keeps moving in the same
direction until a new position update is received. Then, a
new movement vector is calculated, and the player is
moved along this movement vector. Most of the time, this
movement prediction works satisfactory and helps the
game run smoothly. However, there are a couple of
situations where the movement prediction algorithm does
not work as well as we could have wished for.

6.1. Warping

As long as the player moves in straight lines most of the
time, and does not constantly change direction, our
movement prediction algorithm works very well.
Unfortunately, the players do not always necessarily
move in straight lines. If a player feels like it, he may
change direction as often as he likes. This may lead to
need for correction of other player's positions on local
client. In the worst-case scenario, the warp distance can
be as much as 2d (d is the distance moved). If this
happens very often, the players will jump around on the
game board every time new position updates are received,
and trying to hit and push other players will be close to
impossible.

This problem has two possible solutions. The simplest of
these is minimizing the size of d. Since d is the distance
the player moves between position updates, it can be
reduced by simply sending position updates more often,
or reducing the speed of the player. However, both of
these methods have their downsides. If position updates
are sent more often, the amount of data sent per game will
increase correspondingly.

On the other hand, reducing the player's speed leads to the
players' bricks moving slower on the game board. This is

very likely to decrease the playability. For these reasons,
it is important to find appropriate values for the frequency
of position updates and the players' speed. Some warping
will have to be allowed as a compromise.

Another solution to minimize the warping is interpolation.
This is a technique that reduces the amount of warping
significantly, or removes it entirely. However,
interpolation and smooth turning is not suitable for the
kinds like BrickBlock where the player changes directions
very suddenly.

The movement prediction is definitely a problem in our
current implementation of BrickBlock, because of the
warping problem. We have not found a completely
satisfactory solution to this problem.

6.2. Detecting stopped players

Another problem related to our movement prediction
occurs sometimes when a player stops moving. To avoid
sending unnecessary position updates when the player is
standing still, the client sends two equal positions when
the player stops, and then waits for the player to start
moving again before sending new position updates. The
receiving clients then calculate the player's movement
vector based on these positions. Since the positions are
equal, the movement vector will be a 0-vector. This
method works very well most of the time.

However, since we use UDP protocol for performance
purposes, data packets are sometimes lost. If this happens
with one (or both) of the equal position updates, the
player's movement vector will never be detected to be 0
and the player will not stop moving. To make things
worse, since position updates are not transmitted while
the player is standing still, no new position updates are
received by any of the other clients. Because of the
movement prediction algorithm, the stopped player will
therefore keep moving in the same direction on the other
player's screen. Eventually, he will disappear through one
of the walls. If one of the equal positions is lost on the
way from the stopped player to the server, all connected
clients will experience this. If the packet is lost on the
way from the server to a client, only the receiver of the
packets will be affected.

The optimal solution to this problem would be
implementing a mechanism for safe transmission of
critical messages. This is implemented in TCP, but not in
UDP. However, due to performance issues, TCP cannot
be used.

Another, but much less elegant solution is never stopping
the sending of position updates, or sending them less
frequently. In this way, a few lost position updates is not

that critical, since a position update will correct the
player's position soon enough. Although this solves the
problem, sending more information than necessary is not
desirable.

A sort of middle way would be sending a larger number
of position updates before stopping the transmission. In
this way, the probability of at least two equal position
updates reaching their destinations would be improved.
However, from our tests we have discovered that one
packet loss often is followed by several more packet
losses. As a consequence of this, if two packets are lost, it
is likely that five packets would also be lost.

For our prototype game the problem with players not
stopping because of lost packets is a non-critical problem.
Firstly, such packet losses are rare; at least with the
network conditions we have tested the game. Secondly,
and more importantly, BrickBlock is not designed for
static play. Players that are not moving cannot push other
players. At the same time, they are easy targets for other
players seeking to push them into the trap.

6.3. Pushing Other Players

The main goal of BrickBlock is pushing other players into
the trap, and by doing so causing a negative point for the
pushed player. Making this force pushing work in a
satisfactory way has proved to be a challenge in our
implementation. In the current implementation of
BrickBlock, this is done by calculating the strength ratio
between colliding players, and moving the weakest player
in the strongest player's movement direction according to
this ratio. However, because of the position updates that
are continuously transmitted, the pushing does not work
as well as could be desired. Every time a position update
is sent from the pushed player, his position is corrected
with all the other clients. Since these position updates are
not necessarily synchronized with the force vector, this
correction may lead to pushed player being corrected to a
position he has actually been pushed past. When this
happens several times, the player will gradually be placed
more and more under the pushing player. When a player
has picked up a speed power-up, this problem is even
worse, as the difference between the positions in the
updates are even greater.

There are several possible methods that can be used to
reduce this problem. However, we have not been able to
find any solutions that solve the problem satisfactory.
One solution is to increase the transmission frequency to
reduce this problem. If position updates were sent more
often, the deviance between the different clients' model of
the game board would be reduced. Collisions would be
detected closer to the same time with the involved players,
and the weakest player would not be allowed to move

toward the stronger. This increases the amount of data
transmission in the game.

Another solution is to forbid position updates from
pushed players. This could be done by either the server or
by the pushing player. The server would likely be the best
alternative, as this would be the fastest way to notify all
connected clients. However, the consequence of this
approach would be that the pushed player could not move
away from the stronger player. Still, a variant of this
method, where only limited movement from the pushed
player is allowed, would probably be the best way to
improve the force push functionality of BrickBlock. For
example, the server could calculate the positions of the
pushed player based on his previous location, his current
movement vector, and the force vector received from the
pushing player. Then the server could transmit this
position to the other clients, instead of forwarding the
position update from the pushed player immediately.

The current version of BrickBlock does not work as well
as it should because of this problem. Players can push
each other around the board, but sometimes there will be
some player control issues. It is unlikely that there is one
approach that can make the pushing perfect. However, an
approach involving the server calculating the pushed
player's position should be investigated.

7. RELATED WORK

In [4], Busse et. al describe experiences from running a
ported online game over GPRS and UMTS from an
quality of service perspective. The game setup consisted
of a two-player game where one client ran on a PocketPC
PDA and one client ran on the game server. The result
from this test shows that for GPRS the average response
time is about 1 second, where as for UMTS the average
response time is about 285ms. The authors conclude that
the game is unplayable over both GPRS and UMTS. The
results found in this paper are not very different from the
results we found. However, we believe that Busse et. al
concluded that real-time games are unplayable over
wireless networks due to that TCP was used as transfer
protocol and that the game was not implemented to
handle latency of wireless networks. Our implementation
of BrickBlock compensates for a less frequent update of
game states than traditional wired online games.

In [1], Beigbeder et. al investigate the effect of loss and
latency on user performance in the online first-person
shooter game Unreal Tournament (UT) 2003 running on
PCs over wired network. Although the introduction of
loss and latency affected the players' performance to some
degree, the difference was not statistically significant.
E.g., the performance of precision shooting decreased for
latencies above 100ms, and for latency over 300ms the

performance decreased 50%. For movement, neither
latency nor loss had a noticeable impact on the player's
abilities.

In [6], Chen et. al investigate the network traffic of a
Massive Multi-player Online Role Playing Game
(MMORPG) called ShenZhou Online. MMORPGs
require less bandwidth than FPS due to less real-time
gameplay. The more distinctive network characteristics of
MMORPGs are the strong periodicity where game
updates are accumulated and sent at fixed time intervals,
the temporal locality in the game traffic due to chain-
reaction of actions, the irregularity if traffic due to
diversity of user behaviour, and the self-similarity of the
aggregate traffic due to the heavy tailed activity/idle
activities of individual players.

In [7], Dick et. al analyse how network latency and jitter
affects the performance and perception in multiplayer
online games (wired). This paper presents a survey where
players state their subjective perceptions for how network
latency and jitter affects the performance and game play
for twelve different games representing four different
game genres: first person shooter, real-time strategy game,
sport game and car racing simulation. The result of this
survey shows the player's perception of the magnitude of
latency that is accepted for an unimpaired game is about
the same for all game genres: 80.7ms in average. The
perception of how much network latency that can be
tolerated before it ruins the gameplay is up to 150ms with
an average of 118ms.

In [12], Sheldon et. al describe results from a controlled
experiment to investigate the effect of latency on user
performance in the real-time strategy game Warcraft III.
The results of the experiment show that there is no
significant effect on the performance of the players when
the latency is increased (from 0 to 3500 ms). Analysis of
users playing the game showed that the users could
compensate for latencies up to 500ms. For latencies above
800ms, the game appeared erratic which degraded the
game experience.
Other work related to network issues and games can be
found in [2], [10], [11], [8], and [5].

8. CONCLUSION

In this paper we have presented issues and solutions for
managing latency issues related to mobile multiplayer
real-time games. The main problem is to ensure a
coherent representation of the game world for all involved
players and to ensure that player movement and actions
are smoothly and correctly represented for all players.
The simplest solution to this problem is of course to play
the game over wireless networks with low latency like
WLAN. However, it is possible to minimise the problems

also for slower networks like GPRS or EDGE, by
choosing the right balance between client collision
detection and server management. The BrickBlock game
presented in this paper was a very demanding game in
terms management of object collision. More work should
be done on other types of games to improve the solutions
for latency in real-time games.

REFERENCES

[1] Beigbeder, T., R. Coughlan, C. Lusher, J. Plunkett, E. Agu,

and M. Claypool, “The effects of loss and latency on user
performance in unreal tournament 2003”, In NetGames '04:
Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, 2004.

[2] Bernier, Y. W., “Latency Compensating Methods in
Client/Server In-game Protocol Design and Optimization”,
In Game Developers Conference, February 2001.

[3] Brignall, T. W. and T. L. V. Valey, “An online community
as a new tribalism: The world of warcraft”, Hawaii
International Conference on System Sciences, 2007.

[4] Busse, M., B. Lamparter, M. Mauve, and W. Effelsberg,
“Lightweight QoS-support for networked mobile gaming”,
In NetGames '04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games, 2004,
pages 85-92.

[5] Feng, W., F. Chang, W. chi Feng, and J. Walpole, “A traffic
characterization of popular on-line games”, IEEE/ACM
Transactions on Networking, Vol. 13, No. 3, 2005, pages
488-500.

[6] Chen, K.-T., P. Huang, and C.-L. Lei, “Game traffic
analysis: an MMORPG perspective”, Computer Networks,
Vol. 50, No. 16, 2006, pages 3002-3023.

 [7] Dick, M., O. Wellnitz, and L. Wolf, “Analysis of factors
affecting players' performance and perception in
multiplayer games”, In NetGames '05: Proceedings of 4th
ACM SIGCOMM workshop on Network and system
support for games, 2005, pages 1-7.

[8] Fritsch, T., H. Ritter, and J. Schiller, “CAN mobile gaming
be improved?”, In NetGames '06: Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for
games, 2006, pages 44-47.

[9] Krikke, J., “Samurai Romanesque, J2ME, and the Battle for
Mobile Cyberspace”, IEEE Computer Graphics and
Applications, Vol. 23, No. 1, 2003, pages 16-23.

[10] Ng. Y. S., “Designing Fast-Action Games for the Internet”,
In Gamasutra, September 1997.

[11] Pantel, L. and L. C. Wolf, “On the Impact of Delay on
Real-Time Multiplayer Games”. In Systems Support for
Digital Audio and Video, 2002.

[12] Sheldon, N., E. Girard, S. Borg, M. Claypool, and E. Agu,
“The effect of latency on user performance in Warcraft III”,
In NetGames '03: Proceedings of the 2nd workshop on
Network and system support for games, 2003, pages 3-14.

