
28 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 29 more queue: www.acmqueue.com

Game
DevelopmentFO

CU
S

28 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 29 more queue: www.acmqueue.com

The hardest part of making a game has always been the
engineering. In times past, game engineering was mainly
about low-level optimization—writing code that would
run quickly on the target computer, leveraging clever
little tricks whenever possible.

But in the past ten years, games have ballooned in
complexity. Now the primary technical challenge is
simply getting the code to work to produce an end result
that bears some semblance to the desired functionality.
To the extent that we optimize, we are usually concerned
with high-level algorithmic choices. There’s such a wide
variety of algorithms to know about, so much experience
required to implement them in a useful way, and so much
work overall that just needs to be done, that we have a
perpetual shortage of qualified people in the industry.

Making a game today
is a very different experi-
ence than it was even
in 1994. Certainly, it’s
more difficult. In order to
talk about specifics, I’ve
classified the difficulties

into two categories: problems due to overall project size
and complexity and problems due to highly domain-spe-
cific requirements. Though this will help me introduce
the situation in stages, the distinction between the two

Game

Harder Than You Think

Ten or twenty years ago it was all fun and
games. Now it’s blood, sweat, and code.

Development

JONATHAN BLOW
GAME DEVELOPMENT
CONSULTANT

30 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 31 more queue: www.acmqueue.com

categories is a bit artificial; we will come full-circle at the
end, seeing that there are fundamental domain-specific
reasons (problems due to highly domain-specific require-
ments) why we should expect that games are among the
most complicated kinds of software we should expect
to see (problems due to overall project size), and why
we should not expect this to change for the foreseeable
future.

PROJECT SIZE AND COMPLEXITY
To illustrate the growth of games over the past decade,
I’ve chosen four examples of games and drawn graphs
of them. Each node in a graph represents a major area of
functionality, and the arcs represent knowledge couplings

between modules. Two nodes with an arc between them
need to communicate heavily, so design decisions made
in one node will propagate through its neighbors.

Figure 1 depicts a 2D game from the early 1990s, per-
haps a side-scrolling action game for a home console, like
Super Metroid. Other genres of game would have slightly
different diagrams, for example, a turn-based strategy
game like Civilization would gain a node for computer-
opponent AI (artificial intelligence), but would lose the
node for fast graphics. Certainly Super Metroid itself also
has computer opponents, but their behavior is simple
enough that it doesn’t warrant an extra node; instead the
enemy control code is lumped in with “main/misc.”

By 1996, 3D games had become a large portion of the
game industry’s output. Figure 2 shows an early 3D game,
for example, Mechwarrior 2. Contrast this with figure 3, a
modern single-player game.

The largest endeavor we currently attempt is the 3D
massively multiplayer game (MMG), illustrated in figure
4. Everquest is the canonical first example of a 3D MMG,
though a more up-to-date example would be The Matrix
Online (expected release in 2004).

Contrasting figure 4 to figure 1 should give you a gen-
eral sense of how the situation has changed. The arcs in
these figures assume that code has been ideally factored,
but since this is never the case, real-life situations will
be more tangled. Keep in mind that each node in these
graphs is itself a complex system of many algorithms
working together, and that each of these nodes represents
somewhere between six thousand and 40 thousand lines
of source code.

There’s another category of game, the non-massively
multiplayer client/server game, which tends to house a
smaller number of players at once (perhaps 50) and does
not maintain a persistent world. The diagram for one of
those would be somewhere between figure 3 and figure 4.

Tools. To tackle such com-
plexity, it helps to have
excellent development
tools. Sadly, we do not
have excellent develop-
ment tools.

For programming on
PCs, we use a compiler
development environ-
ment like Microsoft Visual
Studio, which is basically
a wrapper around their
C++ compiler; most games
now are written primarily

Game
DevelopmentFO

CU
S

Game
Harder Than You Think

Development

A 2D Game Circa
soundsound

main/misc.main/misc./streaminga
file I/O simulationsim

fast 2D graphics

FIG 1
A 3D Game Circa 19

sound

main/misc.main/misc./streaminga
file I/O

collision
detectiondsimulationsimulationla

fast 2D graphics 3D rendering

FIG 2

30 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 31 more queue: www.acmqueue.com

in C++. Clearly, we are not the target market Microsoft
has in mind. Visual Studio seems to be aimed heavily at
developers of Visual Basic and C# applications, and to
the extent it caters to C++, it’s meant for applications
that make heavy use of COM objects and create many
windows with variegated UI elements. We do very little
of that stuff in modern games. We would much rather
have that manpower spent to make the system compile
programs quickly, or generate efficient code, or produce
reasonable error messages for code that uses C++ tem-
plates. Even so, Visual C++ is the best compiler we have
on PCs—with no competitive alternatives—so we’re just
sort of along for the ride.

On consoles, the console maker as well as one or two
third-party companies will provide some development
tools (compiler, debugger, profiler, etc.). Console life
cycles, however, are about five years long, and there isn’t
much motivation for the tool-maker to improve their
products toward the end of that cycle. Typically, a console
developer will be using an environment with only one to
four years of maturity—not an enviable situation.

To build game content like 3D meshes and anima-
tions, we use programs like Maya or 3D Studio MAX.
However, these programs were originally created for
people who make non-realtime animations (like the
graphics rendering for feature films), so they present a
poor fit. Lately, as games have become a bigger business,
the makers of these tools have begun to pay more atten-
tion to us, to the point that they put “games” at the top
of the list of their products’ relevance. But these tools
are so deeply rooted in the “wrong area,” and so big and
slow to change, that they still represent something very
different from what we really need. For example, most
game studios would benefit from the ability to build large
continuous 3D world meshes, with multiple artists work-
ing on the same mesh at once—or methods of editing
triangular meshes to ensure that cracks and holes do not
appear. This would be much more interesting to us than
much of the functionality these vendors develop and
tout, such as sophisticated cloth simulation (useful to us
only for pre-rendered cinematics, which are becoming
increasingly rare in games).

Thus we need to augment these content packages with
our own plugins and post-processing tools, which will in
general be poorly integrated and feature-starved, and may
present robustness problems. Sometimes, for building the
geometry of the world, we just write our own domain-
specific editors from scratch (Worldcraft and UnrealEd are
examples of this).

Historically, the situation with regard to asset manage-

ment tools has also been poor. A modern game studio
needs a fast and robust system for networked revision
control of source code, 3D models, animations, sound
effects, and all the other various data files involved in a
game. Lately, some companies have risen to provide asset
control specifically for game projects. These tools are still
far from ideal, but we have reason to hope that they will
improve.
Workflow. We also have a lot of workflow problems that
are not so directly tied to specific tool software. On the
programming side, our compile/edit/debug cycles are usu-
ally far too long. Many games take half an hour or longer
to compile when starting from scratch, or when a major
C++ header file is changed. Even smaller changes, caus-
ing a minimal amount of recompilation and relinking,
can take as long as two minutes. In general, C++ seems
to encourage long build times. Once the build time has
grown too long, a team may end up putting a significant
amount of work into refactoring their source code to
make it build more quickly. Often this happens too late,
as the spaghetti of file dependencies has become so severe
that fully refactoring it would be akin to restructuring
the project from scratch. In fact, the best way to avoid
long build times is to architect the entire code base to
minimize dependencies (sometimes giving up runtime
efficiency in the process!). This does not happen too often
because many studios do not take these workflow issues
as seriously as they ought to as the effect of the problem
is somewhat intangible, and there are always so many
clear and present issues to deal with—or they don’t have
sufficient discipline to deal with such a subtle issue over
periods of time measured in years.

Another way to attack the build problem is to use
a third-party tool to distribute compiles across many
machines (one such product is Incredibuild). These tools
can help significantly but they are not cure-all solutions.

Once the game is compiled, we must run it and test
our changes. However, startup times can be very long,
since games often need to load large amounts of data.
Startup time can typically be three minutes for a debug
build with large data files for which load-time optimiza-
tion has not been done. Add this to the compile-and-
link time, and you can easily have a five-minute delay
between making the smallest possible code change and
seeing the new version of the game running. Testing the
actual change will take longer as the programmer needs
to set up the proper conditions within the game world to
exercise that code path.

Visual C++ provides an “edit and continue” feature
wherein one may splice code changes into a running

32 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 33 more queue: www.acmqueue.com

program and avoid these delays. However, this feature
doesn’t work reliably enough to eliminate the problem
(though when it does work, it is very welcome). This fea-
ture is not usually present in the compiler environments
for console systems. Another way to avoid this turn-
around time is to write a significant amount of your code
in a higher-level extension language that can be dynami-
cally reloaded by the game engine without restarting. (For
more on this, see Andrew M. Phelps and David M. Parks’
“Fun and Games with Multi-Language Development” on
page 46 of this issue.)

There’s an analogous issue for the content develop-
ment parts of the team with regard to how long it takes
them to see the effect of changing a texture or model.
Fortunately this problem is easier to solve; as loading
these assets is handled entirely by our game engines,
we are empowered to fix the situation. Currently, some
game engines written by experienced developers provide
automatic reload of content resources at runtime, which
is becoming a more widespread trend.

Jamie Fristrom1,2 has recently written some columns
for Gamasutra3 describing these workflow issues from a
manager’s point of view.
Multiplatform Development. Many games are devel-
oped to run on multiple systems. During development we
often have to build the game for all build types (Debug,
Release) for all target platforms (PC, Playstation 2, Xbox)
before committing our changes to source control. When-
ever this is not done, Murphy’s Law nearly guarantees
that small differences in header files or system behavior
will cause a compile-time or runtime error, disrupting
the work of the rest of the programming team—a bad
situation. So before a programmer can check in a batch
of changes, they may need to perform between two and
five full recompiles (which, as we mentioned earlier,
sometimes take half an hour each!). The programmer can
easily be waiting for hours, so there’s a strong motivation
to check in code changes as infrequently as possible. But
they can’t wait too long, or the code will drift too far out
of sync from the official version, causing headaches when
it comes time to merge.

As in large business projects, bigger game teams tend
to have a “build master,” a person whose job is to watch
over the build, ensuring that disruptions are remedied as
quickly as possible. Sometimes pleasing the build master
can be a difficult task. Yet despite the presence of a build
master, builds still seem to be broken too often.

The result of all this is that, too often, a game pro-
grammer can’t just sit down and get work done; there are
significant barriers to push through.
Third-Party Components. There are many nodes in fig-
ures 3 and 4 (see my discussion of highly domain-specific
requirements in this article below). We ought to be able
to leverage third-party products for some of those boxes
in order to reduce our workload. Licensable third-party
modules exist for some of those nodes. Depending on
the nature of the task, however, some of these products
have been more successful than others at meeting indus-
try needs. Available products cover these areas: audio,
low-level (products have been very successful); rendering,
low-level (very successful); rendering, scene management
(mixed success); collision detection and physics (only some-
what successful, but it’s very hard to write these systems
on your own, so there’s a significant win for third-party
tools here); networking, low-level (slightly successful,
could be better but nobody has come to market with the
right products); skeletal animation and morph targets (very
successful); persistent object storage (mixed success); and
scripting languages (mixed success). Most notably, no use-
ful products for AI functionality exist, though there have
been a few misguided attempts.

Because games are complicated and require deep
technical knowledge (again, see my discussion of highly
domain-specific requirements below.), it can be diffi-
cult just to use these third-party components; often the
programmer must have a lot of experience in the problem
domain in order to understand how to interface with the
product successfully. Even if this is the case, the program-
mer still may face great difficulties in integrating the
third-party module with the rest of the game.

Most of these modules were themselves technically
challenging to create, so they tend to be less than perfect.
Often the API (application program interface) is difficult
to deal with because it embodies some conceptual model
that is a poor fit for the way your game needs to work.
Thick glue layers are usually necessary between the main
game code and the third-party API. Application program
interfaces for rendering or physics often want data orga-
nized in very specific ways, a situation that propagates
through the rest of the program and imposes difficult
constraints (because a lot of data needs to be passed back

Game
DevelopmentFO

CU
S

Game
Harder Than You Think

Development

32 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 33 more queue: www.acmqueue.com

and forth, we can’t just convert the data between formats
at function call time as that would be too slow). And
since games are so CPU-intensive, it will often happen
that the third-party component presents a significant
performance bottleneck for some input scenarios—and
the programmer must fix these situations or work around
them.

Often when third-party code fails, it’s because the
problem it solves is insufficiently large; for the amount
of work the development team spends to make the code

succeed, they might as well have written the module
from scratch—something you certainly don’t want to find
out after failing with the licensed code. The decision to
license third-party code should always be preceded by a
careful cost/benefit analysis as there’s no guarantee that
the product will actually hasten your development.
Full-Figure Option. Instead of licensing components,
we can license an entire game engine from a company
that has successfully built a solid one (see my discussion
of highly domain-specific requirements in this article).

A 3D Single-Player Game Circa 2004
sound, low-levelo

sound,un
management

main/misc.
connects to

nearly everything
(arcs not shown)

streaming file I/Og

scripting evaluatore t

collisionc isision
detection/c

physicsys

spatials at
partitioningp
and searchn

AIA

rendering:
scene

management

scripted events/sc
gameplay code/

entity layer

geometry ande
animationa
exporterso

Tools
(often not
distributed
o players) world constructionon

and layoutd l t
scripted eventppt

creationti
physically-basedeca -
audio/animation/ud o/

arrangementna

rendering:e
low-level

3D animationnD

FIG 3

34 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 35 more queue: www.acmqueue.com

It’s more difficult to build a licensable engine than it is
just to make a game, so there are not many of these to
reasonably choose from. Some recent examples are the
Quake 3 engine and the Unreal engine. The cost of such a
license tends to be high, perhaps $300 thousand to $600
thousand per retail SKU (stock keeping unit). If you’re
trying to make a game that is not doing anything new
technologically, such a license can be a safe decision.
But if you’re trying to be technologically expansive, you
will probably run into the poor-fit problems mentioned
earlier, but on a larger scale this time—you might find
yourself spending $500 thousand for code that you end
up largely rewriting, disabling, or working around. (Even
so, it’s possible for this to be money well spent because
having the engine gives you a kick-start that’s sometimes
better than starting with nothing.)

Both of the aforementioned engines come from the
genre of first-person shooters (FPSs), which is the area
where the finest-honed game technology has flourished.
For games that are very different from an FPS, you may
have a difficult time finding a serviceable engine. There
are no market-proven engines for MMGs.

I’ve discussed a host of tool-related problems that
cause difficulty in developing games today. These issues
will be slow to change. With better tools and workflow,
we will be able to make better games, raising the level of
game complexity and functionality that we can handle.
However, games will not actually become easier to make
because the difficulty of creating a game will always
expand until it exceeds our implementation abilities. The
next section on the challenges of highly domain-specific
requirements will discuss why this is so.

HIGHLY DOMAIN–SPECIFIC REQUIREMENTS
Currently there are three levels of programming in games:
script code, gameplay code, and engine code. Script and
gameplay code control the overall content, rules, and
high-level behavior of the game. For the remainder of
this article I will treat them as one concept and just refer
to “gameplay code.” Sitting below gameplay code is the
engine, which provides all the basic mechanisms for

simulation and I/O. Engine code is much more difficult
to write than gameplay code, first because it requires
advanced knowledge, and also because it must be held to
more stringent quality and performance standards.
Engine Code. Certainly, to write good engine code, you
need to have a good grasp of software engineering. But
also, there’s a lot of domain-specific knowledge required.

Game
DevelopmentFO

CU
S

Game
Harder Than You Think

Development
A 3D MMG Circa 2004

sound:
low-level

sound:
managerer

3D rendering:
low-levell

3D rendering:
scene management

server main/misc.
connects to

nearly everything
in server

and shared

server shared client

client main/misc
connects to

nearly everything
in server

and shared

persistents
storeo

persistents
storeo
glueu

patch/update
server

networkwo
low-level

collision detection///
intersection

simulation/a /
physicsys

entityt
layere

spatial partitionp
and query

3D animation
(skeletal only)s

script evaluator

network
prediction/c
correctionec

client gameplaya
coded

3D animationm
(full)

streaming
file I/O

network
scene managementt

account/
registration

server

server
gameplay code

database analysist
and recovery

AI

static
file I/O

scriptedpp
content

scriptedte
content
creation

geometry andg
animation
exporters

Tools
(often not
distribute
to players

world constructiont
and layoutd l ta

game master toolso physically-basedd
audio/animation

arrangement

client software
update publishing

34 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 35 more queue: www.acmqueue.com

This can be roughly broken into two categories, math-
ematical knowledge and algorithmic knowledge.
Mathematical knowledge. A programmer just isn’t going to
be competent in a modern game without a decent grasp
of basic linear algebra,4 as well as geometry in 2D and 3D.
We often use 4D representations for basic operations (4D
homogeneous coordinates for general linear transforma-

tions, and the quaternions to represent rotations5) so the
ability to reason about higher dimensions is extremely
useful. Basic calculus is necessary for all kinds of simu-
lation and rendering tasks. For many rendering tasks,
signal-processing mathematics is very important—both
linear signal processing6 as well as the murkier study
of spherical harmonics.7 For any kind of sophisticated

A 3D MMG Circa 2004

sound:
low-level

sound:
managerer

3D rendering:
low-levell

3D rendering:
scene management

server main/misc.
connects to

nearly everything
in server

and shared

server shared client

client main/misc
connects to

nearly everything
in server

and shared

persistents
storeo

persistents
storeo
glueu

patch/update
server

networkwo
low-level

collision detection///
intersection

simulation/a /
physicsys

entityt
layere

spatial partitionp
and query

3D animation
(skeletal only)s

script evaluator

network
prediction/c
correctionec

client gameplaya
coded

3D animationm
(full)

streaming
file I/O

network
scene managementt

account/
registration

server

server
gameplay code

database analysist
and recovery

AI

static
file I/O

scriptedpp
content

scriptedte
content
creation

geometry andg
animation
exporters

Tools
(often not
distribute
to players

world constructiont
and layoutd l ta

game master toolso physically-basedd
audio/animation

arrangement

client software
update publishing

FIG 4

36 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 37 more queue: www.acmqueue.com

simulation, you’ll want experience with numerical
analysis and differential forms. For networking, informa-
tion theory and the statistics behind compression and
cryptography are necessary to build a robust system.
Algorithmic knowledge. A good engine programmer should
have working familiarity with a great many algorithms—
so many that attempting to list them here would be silly.
The most necessary algorithms perform tasks like spatial
partitioning, clustering, and intersection and clipping
of geometric primitives. Most algorithms will be mainly
focused on one task area, like rendering or physics, but
these algorithms are often very deep and take a while to
master. For years we have been mining academic research
to find and modify appropriate algorithms. However,
a game engine must meet soft realtime requirements,
and most academic work in the relevant subject areas
is geared toward batch computation. (Most of the past
research in graphics has applied to offline cinematic ren-
dering. Most physics algorithms are unstable and can fail
outright, which is solved in a batch setting by tweaking
the initial conditions and trying again. These algorithms
do not adapt successfully to a soft realtime setting.) As
games are now starting to be taken seriously by the aca-
demic community, this is beginning to change, but most
academic research is still pointed in directions that don’t
do us much good. So, creating a technically ambitious
game engine will often require a substantial amount of
original research.

Engine programmers don’t necessarily need a deep
understanding of all the aforementioned departments of
mathematics and algorithms. But because they’re work-
ing in such a tightly coupled system, even if a concept
doesn’t arise directly within the module they’re working
on, it may significantly affect their work by propagating
through a neighbor. So engine programmers will need
light-to-medium knowledge of most of these subjects in
order to get work done, and should be adaptable enough
to learn the others as need arises.
Crosscutting Concerns. To successfully build a game
engine, it’s not enough to understand a lot of math and
algorithms. When you put many algorithms together

into a tightly coupled system, constraints imposed by the
various algorithms will clash. It takes a certain experience
and wisdom to choose or discover algorithms that can be
combined into a harmonious whole. When game engines
fail, it’s often because they don’t achieve that harmony.

Each of the nodes in figures 3 and 4 represents a
complex system full of crosscutting concerns. Also, many
of those nodes represent cuts across the majority of the
system’s conceptual space. Currently we do not have
programming paradigms that help us address this funda-
mental structural problem. (Some new fruits of language
research, like aspect-oriented programming, are journeying
into that area, but none of them are currently practical
for production use.)
Depth of Simulation. Game code is inherently about
simulating some kind of world. In early games, the
simulations were simple and primitive. For a while we
focused mainly on graphics, which is a simulation of how
light behaves in the game world. But now we are enter-
ing a time when the portions of the simulation governing
physics and AI can be more important to the end user’s
quality of experience than the graphics. Since general-
ized AI is such an unsolved problem, nobody knows what
it will look like in the future. Physics, though, we have
some grasp of. Working on physics has educated us about
some issues that can be generalized as pertaining to all
manner of simulated time-evolving complex systems.

Simulating a complex system generally involves
integrating quantities over time using numerical meth-
ods. At a low level, therefore, quantities must be speci-
fied in an integrable way. Functions containing arbitrary
discontinuities are very difficult to numerically integrate,
but these are also the kinds of functions that computers
make by default. (If/then statements create discontinui-
ties unless we make explicit effort that they do otherwise;
thus we must be careful with if/then statements when
working on low-level simulation!) To help keep things
integrable, significant world events, including AI deci-
sions, need to occur at a level higher than the basic inte-
grator; that is, they aren’t allowed to just kick in without
warning and change the state of the world.

Once we have done all this, we need to worry about
stiffness—the fact that merely by adjusting constants, you
can cause the simulation to become unstable. To the best
of our current methods, good integration techniques can
only provide an area of stability within the simulation
space; you must take care not to step outside that area.

We then need to worry about tunneling, which
happens when we integrate across a timestep that’s too
long, causing us to miss a significant world event. The

Game
Harder Than You Think

Development

Game
DevelopmentFO

CU
S

36 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 37 more queue: www.acmqueue.com

term “tunneling” comes from collision detection, where
we move entities essentially by teleporting them small
distances through space; if we move an entity too quickly,
it may pass through a solid object like a wall, unless we
take extra steps to detect that situation. These extra steps
comprise an approximation to “what really should have
happened,” which may result in consistency problems.

Interesting simulations inherently involve subtle inter-
actions between many different entities, an n2 problem
that doesn’t really want to be solved in real time. To work
around this issue, we need to be good at culling negligible
interactions to pare down the size of the problem. But
such culling tends to involve black-art heuristics and can
go wrong in strange and subtle ways.
Profiling. We’re always trying to push the CPU as far
as we can, so profiling is very important. Unfortunately,
there are no good profilers for games. Games exhibit
heavily modal behavior based on dynamic conditions (at
one moment, sending triangles to the graphics hardware
may be a performance bottleneck; the next moment,
detecting collisions between game entities may be the
problem.)8 To improve game performance, we need to
identify these individual modes of behavior. Unfortu-
nately, commercial profiling products inherently average
the program’s activity over time, which melts all these
spikes into an indistinct mush, hiding the problems.

Usually, we build our own simple profiling systems
into our games. Though useful, it’s not like having a
mature profiling tool. Vendors of graphics hardware, like
ATI and NVIDIA, make some graphics-specific profiling
tools, as do the makers of some game consoles. Those
tools are also helpful but generally insufficient to get a
bird’s eye view of the system.
Risk. Computer games have always evolved toward
increased technical complexity to give the players things
they have never experienced before. As a result, each
wave of games is attempting several technical feats that
are mysterious and unproven. Thus game developers
carry a lot of technical risk (you can’t accurately sched-
ule the unknown or predict how it will interact with the
rest of the system) as well as game design risk (how will
this never-implemented feature feel to the end user? Is it
going to be worth all this trouble we are taking to imple-
ment it?).

CONCLUSION
Games are hard. This article has tried to present a broad
summary of the reasons why; though many relevant fac-
tors have been omitted in order to keep the explanations
short.

Rather than being discouraging, the challenge
involved in making a game is a major part of the reason
so many smart people are drawn to the field. The con-
stant development of new methods, in combination with
ever-faster computers to run them on, makes this a very
interesting time. Q

ACKNOWLEDGMENTS
Thanks to Michael Abrash, Sean Barrett, Atman Binstock,
Charles Bloom, Chris Butcher, Doug Church, Chris
Green, Chris Hecker, Casey Muratori, and Jay Stelly for
their input.

REFERENCES
1. Fristrom, J. Manager in a Strange Land: Turn-

around Time. Gamasutra (Nov. 28, 2003); http:
//www.gamasutra.com/features/20031128/fristrom_
01.shtml (free account and password required).

2. Fristrom, J. Manager in a Strange Land: Content
Turnaround. Gamasutra (Dec. 5, 2003); http://
www.gamasutra.com/features/20031205/fristrom_
01.shtml (free account and password required).

3. Gamasutra (Web portal for game developers
free account and password required): see http://
www.gamasutra.com/.

4. Sheldon, A. Linear Algebra Done Right, 2nd ed. Springer
Verlag, New York: NY, 1997.

5. Hamming, R.W. Digital Filters. Dover, Garden City: NY,
1998.

6. Eberly, D. Quaternion Algebra and Calculus, 1999
(updated 2002); http://www.magic-software.com/
Documentation/Quaternions.pdf.

7. Green, R. Spherical Harmonic Lighting: The
Gritty Details. Proceedings of the Game Devel-
opers Conference (Jan. 16, 2003), 1–47; http://
www.research.scea.com/gdc2003/spherical-harmonic-
lighting.pdf.

8. Blow, J. Interactive Profiling 1-3. Game Developer
Magazine (Dec. 2002-Feb. 2003).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JONATHAN BLOW is a gaming development consultant
who has been working in industry since 1995. Recent
projects include Deus Ex 2 and Microsoft Train Simulator
2. Blow also writes a monthly column, “The Inner
Product,” for Game Developer magazine, focusing on
cutting-edge technical issues in game development.
© 2004 ACM 1542-7730/04/0200 $5.00

http://www.gamasutra.com/features/20031128/fristrom_01.shtml
http://www.gamasutra.com/features/20031128/fristrom_01.shtml
http://www.gamasutra.com/features/20031128/fristrom_01.shtml
http://www.gamasutra.com/features/20031205/fristrom_01.shtml
http://www.gamasutra.com/features/20031205/fristrom_01.shtml
http://www.gamasutra.com/features/20031205/fristrom_01.shtml
http://www.gamasutra.com/
http://www.gamasutra.com/
http://www.magic-software.com/Documentation/Quaternions.pdf
http://www.magic-software.com/Documentation/Quaternions.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf

