
focus

0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 5 9

only a small—but growing—number of sys-
tematic empirical studies exist that explain
how these communities produce software.3–5

Similarly, little is known about how commu-
nity participants coordinate software develop-
ment across different settings, or about what
software processes, work practices, and orga-
nizational contexts they need for success.

Academic communities, commercial enter-
prises, and government agencies that want to
benefit from FOSS development will need
grounded models of its processes and practices

to effectively invest their limited resources. My
team at the UC Institute for Software Research
investigated the software development prac-
tices, social processes, technical system config-
urations, organizational contexts, and interre-
lationships that give rise to FOSS systems in
different communities. In particular, we
looked at the FOSS computer game commu-
nity to provide examples of common develop-
ment processes and practices.

Understanding FOSS
development practices

No prior model or globally accepted frame-
work exists that defines how FOSS is devel-
oped in practice. The starting point is to inves-
tigate FOSS practices in different communities.

Researchers are investigating at least four
diverse FOSS communities through empirical

Free and Open Source
Development Practices in
the Game Community

T
he free and open source software (FOSS) approach lets commu-
nities of like-minded participants develop software systems and
related artifacts that are shared freely instead of offered as
closed-source commercial products. Free (as in freedom) soft-

ware and open source software are closely related but slightly different ap-
proaches and licensing schemes for developing publicly shared software. Al-
though the amount of popular literature that attests to FOSS is growing,1,2

developing with open source software

Walt Scacchi, University of California, Irvine

Empirical studies of four distinct free and open source software
development communities find at least five common types of
development processes. These communities, particularly the
computer game community, provide examples of common practices.

studies.3,4,6,7 These communities center on
software development for Web and Internet
infrastructure, computer games, software en-
gineering design systems, and X-ray and deep-
space astronomy.

Rather than examining FOSS development
practices for a single system (for example,
GNU/Linux)—which might be interesting but
is unrepresentative—or related systems from
the same community (such as Internet infra-
structure), my team’s focus was to identify
general FOSS practices both in and across
these diverse communities. These practices
were empirically observed in different projects
from these communities using ethnographic
methods detailed elsewhere.6,7 Further, data
exhibits in the form of screenshots from proj-
ects in the computer game community exem-
plify the practices. (On the SourceForge Web
portal, computer games are the fourth most
popular category of FOSS projects, with more
than 8,000 out of the 70,000 total registered
projects.) Comparable data from the other
communities could serve equally well.

FOSS community participants often play
different roles, such as core developer, module
owner, code contributor, code repository ad-
ministrator, reviewer, or end user. They con-
tribute software content (programs, artifacts,
execution scripts, code reviews, comments,
and so on) to Web sites in each community and
communicate their content updates via online
discussion forums, threaded email messages,
and newsgroup postings. Screenshots, how-to
guides, and frequently asked questions also
help convey system-use scenarios. Software
bug reports appearing in newsgroup messages,
on bug-reporting Web pages, or in bug data-
bases describe what isn’t working as expected.
Administrators of these sites serve as gatekeep-
ers by choosing what information to post,
when and where on the site to post it, and
whether to create a site map that constitutes a
taxonomic information architecture for types
of site- and project-specific content.

Software extension mechanisms and FOSS
software copyright licenses that ensure free-
dom and openness are central to FOSS devel-
opment. Extension mechanisms let people
modify the software system’s functionality or
architecture via intra- or interapplication
scripting or external module plug-in architec-
tures. Copyright licenses, most often derived
from the GNU General Public License, are at-

tached to any project-developed software so
that it can be further accessed, examined, de-
bated, modified, and redistributed without fu-
ture loss of these rights. These public software
licenses contrast with the restricted access of
closed-source software systems and licenses.

In each of these four communities, partici-
pants occasionally publish online manuals,
technical articles, or scholarly research papers
about their software development efforts,1,3,8–10

which are then available for offline examina-
tion and review.

Each type content is publicly available data
that can be collected, analyzed, and repre-
sented in narrative ethnographies, quantitative
studies, or computational models of FOSS de-
velopment processes. Significant examples of
each kind of data have been collected, ana-
lyzed, and modeled.3–5

FOSS development processes
Unlike the software engineering world,

FOSS development communities don’t seem to
readily adopt modern software engineering
processes. FOSS communities develop soft-
ware that’s extremely valuable, generally reli-
able, globally distributed, made available for
acquisition at little or no cost, and readily
used in its associated community. So, what de-
velopment processes are they routinely using
and practicing?

From studies to date, they are employing at
least five types of FOSS development processes.
I’ll briefly describe each process in turn, but
don’t construe any one as being independent
or more important than the others. Further-
more, it appears that these processes occur
concurrently, rather than strictly ordered as in
a traditional life-cycle model or partially or-
dered as in a spiral process model.

Requirements analysis and specification
Software requirements analysis helps iden-

tify the problems a software system should ad-
dress and the form solutions might take. Re-
quirements specification identifies an initial
mapping of problems to system-based solu-
tions. In FOSS development, how does re-
quirements analysis occur, and where and how
are requirements specifications described?

Studies to date have yet to find records of
formal requirements elicitation, capture, analy-
sis, and validation—the kind suggested by
modern software engineering textbooks—in

FOSS
development
communities
don’t seem to
readily adopt

modern
software

engineering
processes.

6 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

any of the four communities.4 In general, you
can’t find them on FOSS Web sites or in “re-
quirements specification” documents. What
studies have found and observed is different.

FOSS requirements take the form of
threaded messages or discussions on Web sites
that are available for open review, elaboration,
refutation, or refinement. Requirements analy-
sis and specification are implied activities.
They routinely emerge as a by-product of com-
munity discourse about what its software
should or shouldn’t do and who’ll take respon-
sibility for contributing new or modified sys-
tem functionality. The requirements appear as
after-the-fact assertions in private and public
email discussion threads, ad hoc software arti-
facts (such as source code fragments included
in a message), and site content updates that
continually emerge.4,11 More conventionally,
requirements analysis, specification, and vali-
dation aren’t performed as a necessary task
that produces a mandated requirements deliv-
erable. Instead, you find widespread practices
that imply reading and sense-making of online
content. You find interlinked discourse “webs”
that effectively trace, condense, and solidify
into retrospective software requirements. All
the while, the project is globally accessible to
existing, new, or former FOSS project partici-
pants. Figure 1 shows an example of a retro-
spective requirements specification.

In short, requirements take these forms be-
cause FOSS developers implement their sys-
tems and then assert that certain features are
necessary. They don’t result from the explicitly
stated needs of user representatives, focus
groups, or product marketing strategists.

Coordinated version control, system build,
and staged incremental release-review

Software version control tools such as the
Concurrent Versions System—a FOSS system
and document base10—are widely used in
FOSS communities. Figure 2 shows one such
FOSS repository on the Web.

Tools such as CVS serve as both a central-
ized mechanism for coordinating FOSS devel-
opment and a venue for mediating control
over which software enhancements, exten-
sions, or upgrades will be checked in to the
archive. If checked in, these updates will be
available to the community as part of the al-
pha, beta, candidate, or official released ver-
sions, as well as the daily-build release.

Software version control, as part of a soft-
ware configuration management activity, is re-
current. It requires coordination but lets you
stabilize and synchronize dispersed, somewhat
invisible development. This coordination is
necessary because decentralized code contribu-
tors and reviewers might independently con-
tribute software updates or reviews that over-
lap, conflict, or generate unwanted side effects.

Each project team or CVS repository ad-
ministrator must decide what can be checked
in and who can and can’t check in new or mod-
ified software source code content. Some proj-
ects make these policies explicit through a vot-
ing scheme,9 and in other projects they remain
informal, implicit, and subject to negotiation
with the designated module or version owner.
In either case, the team must coordinate ver-
sion updates for a new system build and release
to take place. Subsequently, developers who
want to submit updates to the community’s
shared repository rely primarily on online dis-
cussions in lean media form, such as threaded
email messages posted on a site,5 rather than
having to deal with onerous system configura-
tion control committees or seemingly arbitrary
product delivery schedules. So, joint use of ver-

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 6 1

Figure 1. Computer-
game software
requirements specified
as retrospectively
asserted features.
(figure courtesy of www.
bnetd.org, July 2002)

sioning, system building, online communica-
tion, and file-browsing and file-transfer tools
mediates the process of coordinated version
control, system build, release, and review.

Maintenance as evolutionary redevelopment,
reinvention, and revitalization

Software maintenance—adding and sub-
tracting system functionality, debugging, re-
structuring, tuning, conversion (for example,
internationalization), and migration across
platforms—is a widespread, recurring process
in FOSS development communities. Perhaps
this is no surprise, considering maintenance is
generally viewed as the major activity associ-
ated with a software system across its life cy-
cle. However, the traditional label of software
maintenance doesn’t quite fit what you see oc-
curring in different FOSS communities. In-
stead, it might be better to characterize the
overall evolutionary dynamic of FOSS as rein-
vention. Reinvention occurs through sharing,
examining, modifying, and redistributing con-
cepts and techniques that have appeared in
closed-source systems, research and textbook
publications, conferences, and developer-user
discourse across multiple FOSS projects. Thus,

reinvention is a continually emerging source of
adaptation, learning, and improvement in
FOSS functionality and quality.

FOSS systems seem to evolve through mi-
nor improvements or mutations that are ex-
pressed, recombined, and redistributed across
many releases with short life cycles. FOSS end
users who act as developers or maintainers
continually produce these mutations. They ap-
pear initially in daily system builds. The mod-
ifications or updates are then expressed as ten-
tative alpha, beta, or release versions that
might survive redistribution and review. Then,
they might be recombined and reexpressed
with other mutations in producing a new, sta-
ble release version. As a result, these muta-
tions articulate and adapt a FOSS system to
what its user-developers want it to do while
reinventing the system.

FOSS systems coevolve with their develop-
ment communities; one’s evolution depends
on the other’s. In other words, a project with
few developers (most typically one) won’t pro-
duce and sustain a viable system unless or un-
til the team reaches a critical mass of between
five and 15 core developers. If this happens,
the system might be able to grow in size and
complexity at a sustained exponential rate, de-
fying the laws of software evolution that have
held for decades.12

Closed-source software systems thought to
be dead or beyond their useful product life or
maintenance period may be revitalized through
redistributing and opening their source code.
However, this might only succeed in applica-
tion domains with devoted, enthusiastic user-
developers who are willing to invest time and
skill to keep their cultural heritage alive. The
Multiple Arcade Machine Emulator site (www.
mame.net) for vintage arcade games shows that
thousands of computer arcade games from the
1980s and 1990s are being revitalized through
migration to FOSS-system support.

Project management and career development
FOSS development teams can take the or-

ganizational form of interlinked layered meri-
tocracies operating as a dynamically organ-
ized but loosely coupled virtual enterprise.13

A layered meritocracy9 is a hierarchical orga-
nizational form that centralizes and concen-
trates certain kinds of authority, trust, and re-
spect for experience and accomplishment
within the team. However, it doesn’t imply a

6 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 2. A view into a
Web-accessible CVS
(Concurrent Versions
System) configuration
archive of software
source code files for the
game Quake. (figure
courtesy of the Quake-
Forge Project)

single authority, because decision-making can
be shared among core developers who act as
peers at the top echelon. Instead, meritocra-
cies tend to embrace incremental innovations,
such as evolutionary mutations to an existing
software code base, over radical ones. Radical
change involves exploring or adopting untried
or sufficiently different system functionality,
architecture, or development methods. A mi-
nority of code contributors who challenge the
core developers’ status quo might advocate
radical changes. However, their success usu-
ally implies creating and maintaining a sepa-
rate version of the system and potentially los-
ing a critical mass of other FOSS developers.
So incremental mutations tend to win out
over time.

Figure 3 illustrates the form of a meritoc-
racy common to many FOSS projects.4 In this
form, software development work appears to
be logically centralized while physically dis-
tributed in an autonomous and decentralized
manner.13 However, it’s neither simply a
“cathedral” nor a “bazaar.”1 Instead, when
layered meritocracy operates as a virtual en-
terprise, it relies on virtual project manage-
ment to mobilize, coordinate, control, build,
and assure the quality of FOSS development
activities. It could invite or encourage system
contributors to come forward and take a
shared, individual responsibility that’ll serve
to benefit the FOSS collective of user-develop-
ers. VPM requires several people to act as
team leader, subsystem manager, or system
module owner in either a short- or long-term
manner. People take roles on the basis of their
skill, accomplishments, availability, and belief
in community development. Figure 4 shows an
example of VPM.

Project participants higher up in the meri-
tocracy have greater perceived authority than
those lower down. But these relationships are
only effective if everyone agrees on their
makeup and legitimacy. Administrative or co-
ordination conflicts that can’t be resolved can
end up either splitting or forking a new system
version. Then the conflicting participants must
take responsibility for maintaining that version
by reducing their stake in the ongoing project
or by simply conceding the position in conflict.

VPM exists in FOSS communities to enable
effective control via community decision-
making and Web site and CVS repository admin-
istration. Similarly, it exists to mobilize and sus-

tain the use of privately owned resources that
the community can use (for example, Web
servers, network access, site administrator la-
bor, skill, and effort). Finally, some preliminary
evidence suggests that, compared to projects
with traditional software project management,

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 6 3

Elder Elder

Leader

Regular

Novice

Visitor

Leader

Regular

Staff

VolunteersContractors

Enthusiasts

Figure 3. A layered meritocracy and role hierarchy.

Figure 4. A description of how a FOSS computer game development
project organizes and manages itself. This statement serves as an
organizational surrogate to denote administrative authority, and
includes an invitation to those who seek such project authority.
(figure courtesy of PlaneShift)

FOSS projects can produce higher quality sys-
tems,3 perhaps owing to VPM.

Traditional software project management
stresses planning and control. Lawrence Lessig
observes that source code intentionally or un-
intentionally achieves a mode of social control
over those who use it.15 So, in the case of
FOSS development, Lessig’s observation sug-
gests that source code controls or constrains
user–system interaction, while the code in
software development tools, Web sites, and
project assets controls, constrains, or facili-
tates developer interaction with the evolving
FOSS system code. CVS enables some form of
social control. However, the fact that these
systems’ source codes are freely available
means that user-developers can examine, re-
vise, and redistribute patterns of social control
and interaction, thus favoring one form of
project organization and user–system interac-
tion over others. Thus, this dimension of VPM
is open to manipulation by core developers.
They can encourage certain patterns of devel-
opment and social control and discourage
ones that might not advance the collective
needs of project participants.

FOSS developers have complex motives for
being willing to allocate their time, skill, and
effort to their systems’ ongoing evolution.
They might simply think the work is fun, per-
sonally rewarding, or a means to exercise and
improve their technical competence in a way
that they can’t in their formal jobs or fields.6

In FOSS computer game communities, “peo-
ple even get hired for doing these things,” as
Figure 5 shows. Some FOSS developers create
computer game modifications (game mods)
that widely circulate and generate substantial
sales revenue for the game’s proprietary ven-
dor, and they sometimes share in the profits.8

Furthermore, being a central node in a net-
work of software developers who intercon-
nect multiple FOSS projects doesn’t only
bring social capital and recognition from
peers. It also lets independent FOSS systems
merge into larger ones that gain the critical
mass of developers to grow even more and at-
tract even larger user-developer communities.
So, it might be surprising that more than 60
percent of the FOSS developers surveyed in a
recent study6 reported participating in two
to 10 FOSS projects. This effectively intercon-
nects not only independent system projects
into a larger system architectures, but also in-
terlinks their meritocracies, VPM practices,
and social control. This enables the collective
system and community to grow more robust
together.

Software technology transfer and licensing
Software technology transfer is an impor-

tant and often neglected process in the aca-
demic software engineering community. How-
ever, the diffusion, adoption, installation, and
routine use of FOSS software systems and
their Web-based assets are central to the sys-
tems’ ongoing evolution. Transferring FOSS
technology from existing Web sites to organi-
zational practice is a community and project
team-building process.14 FOSS developers
publicize and share their project assets by
adopting and using FOSS project Web sites—
a communitywide practice. You can build
these Web sites using FOSS content manage-
ment systems (such as PhP-Nuke) and serve
them using FOSS Web servers (Apache), data-
base systems (MySQL), or application servers
(JBoss). User-developers are increasingly ac-
cessing these sites via FOSS Web browsers
(Mozilla). Furthermore, ongoing FOSS proj-

6 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 5. This
page highlights
career development
opportunities for
would-be computer
game developers via
open source game
mods. (figure courtesy
of Epic Games)

ects might use dozens of FOSS development
tools as stand-alone systems (CVS), integrated
development environments (NetBeans or
Eclipse), or their own application’s subsystem
components. These projects similarly employ
asynchronous project communications sys-
tems that are persistent, searchable, traceable,
public, and globally accessible.

FOSS technology transfer isn’t an engineer-
ing process—at least not yet. It’s instead a so-
ciotechnical process that entails the develop-
ment of constructive social relationships;
informally negotiated social agreements; and a
routine willingness to search, browse, down-
load, and try out FOSS assets. It’s also a com-
mitment to continually participate in public,
Web-based discourse and shared representa-
tions about FOSS systems, much like the other
processes identified earlier. Community build-
ing and sustained participation are essential,
recurring activities that let FOSS persist with-
out centrally planned and managed corporate
software development centers.

FOSS systems, development assets, tools,
and project Web sites serve as a venue for so-
cializing, building relationships and trust,
sharing, and learning with others. Some open
source software projects have made develop-
ing such social relationships their primary
project goal. Figure 6 shows such a system, in
which developers took an existing networked
game system and created an open source game
mod that transformed it into a venue for social
activity. Many contemporary visual artists are
also creating game mods as the basis for new art
works (see examples at www.selectparks.net).

An overall, essential part of what enables
the transfer and practice of FOSS development,
and what distinguishes it from traditional soft-
ware engineering, is the use and reiteration of
FOSS public licenses. More than half of the
60,000 FOSS projects registered at Source-
Forge use the GNU General Public License.
The GPL preserves and reiterates the beliefs
and practices of sharing, examining, modify-
ing, and redistributing FOSS systems and as-
sets as property rights for collective freedom.
Open source software projects that comingle
assets that weren’t created as free property
have instead adopted variants that relax or
strengthen the rights and conditions the GPL
lays out. Visit www.opensource.org or www.
creativecommons.org for general information
on how to create these licenses.

F ree and open source software develop-
ment practices give rise to a new view
of how complex software systems can

be constructed, deployed, and evolved. FOSS
projects don’t adhere to traditional software
engineering life-cycle principles from modern
textbooks. They rely on lean electronic com-
munication media, virtual project manage-
ment, and version management mechanisms
to coordinate globally dispersed development
efforts. They coevolve with their development
communities, which reinvent and transfer
software technologies as part of their team-
building process. Practices to propagate FOSS
technology and culture are intertwined and
mutually situated to benefit motivated partici-
pants and contributors.

So, software engineering managers and de-
velopers working in traditional proprietary,
closed-source, centrally managed, and colo-
cated software development centers might rec-
ognize that viable alternatives exist to the prac-
tices and principles they’ve been following.
These FOSS processes offer new directions for
developing complex software systems.

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 6 5

Figure 6. A first-person
shooter game (Unreal
Tournament) that’s
been modified and
transformed into a 3D
virtual environment for
socializing and virtual
dancing with in-game
avatars. (figure cour-
tesy of Martin C. Martin)

Acknowledgments
Grants IIS-0083075, ITR-0205679, ITR-0205724,

and ITR-0350754 from the US National Science Foun-
dation supported this research. Andrew Henderson and
James Neighbors commented on an earlier draft.

References
1. C. DiBona, S. Ockman, and M. Stone, Open Sources:

Voices from the Open Source Revolution, O’Reilly and
Associates, 1999.

2. S. Williams, Free as in Freedom: Richard Stallman’s Cru-
sade for Free Software, O’Reilly and Associates, 2002.

3. A. Mockus, R.T. Fielding, and J. Herbsleb, “Two Case
Studies of Open Source Software Development: Apache
and Mozilla,” ACM Trans. Software Eng. and Method-
ology, vol. 11, no. 3, July 2002, pp. 309–346.

4. W. Scacchi, “Understanding the Requirements for De-
veloping Open Source Software Systems,” IEE Proc.—
Software, vol. 149, no. 1, Feb. 2002, pp. 24–39.

5. Y. Yamauchi et al., “Collaboration with Lean Media:
How Open-Source Software Succeeds,” Proc. Computer
Supported Cooperative Work Conf. (CSCW 00), ACM
Press, pp. 329–338.

6. A. Hars and S. Ou, “Working for Free? Motivations for

Participating in Open-Source Software Projects,” Int’l J.
Electronic Commerce, vol. 6, no. 3, Spring 2002, pp.
25–39.

7. S. Viller and I. Sommerville, “Ethnographically In-
formed Analysis for Software Engineers,” Int’l. J.
Human–Computer Studies, vol. 53, no. 1, July 2000,
pp. 169–196.

8. C. Cleveland, “The Past, Present, and Future of PC
Mod Development,” Game Developer, vol. 8, no. 2,
Feb. 2001, pp. 46–49.

9. R.T. Fielding, “Shared Leadership in the Apache Project,”
Comm. ACM, vol. 42, no. 4, Apr. 1999, pp. 42–43.

10. K. Fogel, Open Source Development with CVS, Corio-
lis Press, 1999.

11. D. Truex, R. Baskerville, and H. Klein, “Growing Sys-
tems in an Emergent Organization,” Comm. ACM, vol.
42, no. 8, Aug. 1999, pp. 117–123.

12. M.M. Lehman, “Programs, Life Cycles, and Laws of
Software Evolution,” Proc. IEEE, vol. 68, no. 9, Sept.
1980, pp. 1060–1078.

13. J. Noll and W. Scacchi, “Supporting Software Develop-
ment in Virtual Enterprises,” J. Digital Information, vol.
1, no. 4, Jan. 1999, http://jodi.ecs.soton.ac.uk/Articles/
v01/i04/Noll.

14. A.J. Kim, Community-Building on the Web: Secret
Strategies for Successful Online Communities, Peachpit
Press, 2000.

15. L. Lessig, CODE and Other Laws of Cyberspace, Basic
Books, 1999.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Author

Walt Scacchi is a senior research computer scientist and research faculty member at the
Institute for Software Research and director of research for the Laboratory for Game Culture
and Technology, both at the University of California, Irvine. His research interests include open
source software development, software process engineering, computer game culture and tech-
nology, and organizational studies of system development. He received his PhD in information
and computer science from UC Irvine. He is a member of the AAAI, ACM, and IEEE. Contact
him at the Institute for Software Research, Univ. of California, Irvine, Irvine, CA 92697-3425;
wscacchi@ics.uci.edu; www.isr.uci.edu/open-source-research.html.

HAVE YOU EVER HAD AN EXPERIENCE
in constructing software that gave you un-
expected insights into the larger problem
of software engineering and development
of high-quality software? If so, IEEE Soft-
ware encourages you to submit your ex-
periences, insights, and observations so
that others can also benefit from them.

We are looking for articles that en-
courage a better understanding of the
commonality between programming in
the small and programming in the large,
and especially ones that explore the
larger implications of hands-on software
construction experiences.

Submissions are accepted at any time.

C A L L

F O R

A R T I C L E S Software Construction
POSSIBLE TOPICS INCLUDE BUT ARE NOT
LIMITED TO THE FOLLOWING:

• Coding for high-availability applications

• Coding for compatibility and extensibility

• Coding for network interoperability

• Effective use of standards by programmers

• Lessons learned from game programming

• Techniques for writing virus-proof software

• Agents: When, where, and how to use them

• PDAs and the future of “wearable” software

• Is “agile” programming fragile programming?

• Prestructuring versus restructuring of code

• Integration of testing and construction

• Aspect-oriented programming

• Impacts of language choice on application
cost, stability, and durability

