
What is it that all game engines and visual simu-
lation tools have in common? A lot, as it turns

out. In fact, game engines have so much in common
that you have to wonder if they should actually be a
commodity—and they should be. That advanced fea-
ture that makes one game engine different from all the
rest is part of the reason why game engines and visual
simulation tools cost so much. Furthermore, most game
engines have a unique development pipeline associat-
ed with them. The way content is developed and inte-
grated is specific to that engine, implying limited (if
any) portability and reuse. This business model is per-
fectly appropriate for the entertainment industry where
having the latest graphics features can make or break a
title, but to the training community, the model simply
does not work. We need to think differently.

Why open source?
You might wonder why the military training com-

munity is investing in an open source game engine. A
common misconception is that they want free software.
While “free” is indeed an attractive feature, it is not the
driving factor; it’s flexibility and reuse. We need
reusability on a grand scale because the volume of train-
ing applications that will be needed in the coming years
is extraordinarily large. Many of these applications will
be small compared to a commercial game. It’s hard to
make a business case to use an expensive game engine
for a training application that might involve 15 minutes
of training exposure. But the model becomes acceptable
when the marginal costs of developing an application
are in line with the content and not the architecture—
what was once unaffordable is now quite practical and
cost efficient.

By embracing open source, we drive investment into
content and away from tools. This does not mean that
specific tools cannot be built on top of the game engine.
Game developers know that it’s the tools that actually
influence the look and feel of a game more than any-
thing else. By focusing on content and reusability of con-
tent and code, we maintain a development pipeline that
is open and flexible while maintaining the ability of a
developer to have its own unique look and feel.

Why build a new engine?
The next question you might have is, why build a new

open source game engine when there are already sev-
eral open source products available. In a survey of these

products, we found that they all tend to be genre spe-
cific and none have a particularly large user communi-
ty. If you compare the size of the user community of any
open source game engine with, say, MySQL, Python, or
OpenSceneGraph, for example, there is no comparison.
Game engine communities are relatively tiny. But what
we noticed is that many developers were using multiple
lower level tools to build their applications. A common
request on the OpenSceneGraph bulletin boards is, Why
doesn’t someone put OpenSceneGraph and CAL3D
together so I don’t have to? This is the approach we took
in building Delta3D.

Designing the Delta3D engine
Delta3D is actually a thin, unifying layer that sits atop

many open source products you might already use. It
has a high-level, cross-platform (Win32 and Linux) C++
API designed with programmers in mind to soften the
learning curve, but always makes lower levels of abstrac-
tion available to the developer. Programmers can devel-
op content through the level editor—they can write
Python script to the Delta3D API or to the underlying
tools directly. Delta3D uses the standard Lesser GNU
Public License (LGPL). It’s completely modular and
allows a best-of-breed approach whereby any module
can be swapped out if a better option becomes available.
Figure 1 shows the Delta3D architecture.

Delta3D also handles networking and has record and
playback capabilities for capturing and replaying game-
play. We have a working prototype of distributed ren-
dering via the Common Image Generator Interface for
rendering to multiple simultaneous displays. In our lab-
oratory, we have integrated distortion correction for a
flight simulator in a CAVE using Delta3D.

Delta3D has the following high-level tools for rapid
application development (see Figure 2): There is an
object viewer, a particle editor, a binary space partition
(BSP) compiler, and a runtime debug GUI. A full-fea-
ture level editor is under development and will be avail-
able by the fall of 2005. Delta3D is multigenre. It
accomplishes this through an application base class that
optimizes for the general requirements of a first-person
shooter, real-time strategy game, or whatever is desired.

Delta3D has high-level environmental effects to
include dynamic clouds, ephemerides, and weather. It
also uses the stateless one-pass adaptive refinement
extension (Soarx)1 algorithm to render continuous lev-
els of detail for terrain such that it effectively renders

Rudy Darken,
Perry McDowell,
and Erik
Johnson

The Modeling,
Virtual
Environments,
and Simulation
(Moves) Institute

The Delta3D Open Source Game Engine ______________

Projects in VR
Editors: Lawrence Rosenblum and
Michael Macedonia

10 May/June 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

infinite resolution by adding noise
to the base data set. A current
research project underway at the
Naval Postgraduate School involves
automatically generating and plac-
ing vegetation on top of Soarx-
rendered terrain. Using readily
available data sources, we can gen-
erate extraordinarily large terrain
models at continuous levels of detail
with realistic vegetation that are just
as suitable for flight simulation as
they are for ground-based games.

Delta3D community
The developer communities for

many of the open source projects
within Delta3D are large. Delta3D
inherits from all of these. As new fea-
tures are added to OpenSceneGraph,
for example, Delta3D will have them.
The same is true for all the open
source tools that make up Delta3D.
Delta3D developers also contribute
back to the open source projects that
it uses. We are a part of their com-
munities, and they are a part of ours.

We built a set of tutorials to help new users get Delta3D
installed and running properly. These are fairly basic but
they get the new developer writing scripts and code and
comfortable with the structure of the Delta3D develop-
ment pipeline. If you know some C++, you’ll be writing
Delta3D applications in short order.

Beyond tutorials, the API is fully documented and
online. The Delta3D Web site (http://www.delta3d.org)
contains forums and other assistance from the Delta3D
user and developer community. The Web site offers
Delta3Dsource code and/or libraries, all the Delta3D
dependencies (for example, the open source modules),
and example programs and models. The Web site will be
the clearinghouse for everything Delta3D was designed
to make reusable—from code and scripts to geometric
models, textures, and motion capture data.

The sponsors of Delta3D are investing in its develop-
ment with the intention of building many applications

in it in the coming years. This built-in development com-
munity will also serve to strengthen Delta3D and sup-
port for all developers and users.

Because Delta3D is open source and everything that
makes up Delta3D is open source, it’s possible (but not
necessary) to develop an application entirely on open
source. Modeling could be done with the Blender mod-
eling and animation tool (http://www.blender3d.org).
Development could be done with a GNU compiler such
as GCC and any open source editing tool. Delta3D is suit-
ed for all runtime infrastructures and is compatible with
the Linux operating system. Game development with
no cost for development software and no runtime licens-
ing costs is attainable.

However, we designed Delta3D to coexist with com-
mercial software too. Delta3D commoditizes all the com-
mon elements of game engines and simulation tools.
Regarding the unique elements, the intent of Delta3D is

IEEE Computer Graphics and Applications 11

Applications

Delta3D

Tools

Viewer

Particle editor

BSP compiler

Scripting Physics Networking Input devicesScene
graph

Window
managementGUI

CAL3D

Character
animation

OpenAL Python Open
dynamics

engine

TinyXML RTI-NG PLIBOpen
scene
graph

ProducerFLTK glGUI InterSenseReplicant
body

Audio XML

1 Delta3D architecture. All the products in the bottom layer are existing open source projects. Delta3D unifies them into one consis-
tent API with associated tools.

2 Delta3D toolset includes a particle editor, an object viewer, and a visual debugger. In the
backdrop are models developed for America’s Army but rendered in Delta3D.

to enable tool developers to build special-purpose tools
that work with Delta3D but are not open source. This
conforms to the LGPL license because no modification is
made directly to Delta3D. We encourage this approach
because it adds value to the engine while preserving the
proprietary nature of commercial software.

Applications
Delta3D has already been used for several training

game applications. The most mature of these is an appli-
cation that trains Marine Corps forward observers how
to call for and adjust artillery fire. We originally built the
forward observer PC simulator (FOPCSIM) on a pro-
prietary visual simulation toolkit (see Figure 3).
However, end users requested the software, and even
though we were willing to give away the application
source code, the runtime licenses associated with the
development tools made this impossible. We redesigned
and implemented FOPCSIM on Delta3D. It now has
users around the US and in four countries.

Another example is a prototype training application
for shipboard firefighting. This would be used in a full-
scale online learning environment where a sailor might
learn how to fight a fire online using a standard Web-
based learning management system (LMS) that might
include Web pages, images, animations, or other multi-
media. Then, to demonstrate proficiency in the task,
another application could be integrated with the LMS
so that trainers could track the student’s progress. This
capability is a critical element of the Navy’s strategy for
future training and education.

What’s ahead for Delta3D?
Delta3D is just getting started. We are encouraged

by the tremendous response to the project. Downloads
and forum activity are on the rise daily. It seems as
though many developers were thinking the same
things we were in terms of a unification of existing

open source tools. Delta3D is a great start, but much
remains to be done.

We are developing first-generation development tools
to support the Delta3D development pipeline but inde-
pendent developers will need more. We expect genre-
specific tools to emerge soon starting with the
application base classes that define genre structure at a
high level. The networking capabilities in Delta3D will
also need improvement. It handles standard military
simulation interoperability and generic socket connec-
tivity, but will need massive multiplayer online gaming
capabilities. Developing the LMS connectivity described
earlier is also a priority for us in the next year.

We are often asked how support for Delta3D can be
made scalable as the community grows. If you buy a
commercial product, you can get printed manuals, go
to onsite classes, and call a support line with specific
questions. Currently, we rely on and participate in the
open source community for support. We are actively
assisting commercial partners to support Delta3D in the
same way that Red Hat supports Linux or MySQL.com
supports MySQL.

Delta3D is an idea whose time has come. It’s time to
commoditize the game engine and visual simulation
market by providing a powerful open source tool that
allows developers to focus on content rather than the
tools themselves. Our clients pay once for an applica-
tion and have the freedom to distribute the application
without licensing restrictions of any kind. Delta3D lever-
ages the success of existing open source tools such as
OpenSceneGraph. Why build a new community when
the one we need already exists?

We encourage all to download Delta3D and give it a
try. There is no panacea to the game development
pipeline quandary, but we believe that what is required
fits the promise of the open source software move-
ment. As rapidly as the gaming world is changing, it
will take a community to keep up with it. Join us in that
community. ■

Acknowledgments
Delta3D has been developed through the support of

the Navy Modeling and Simulation Management Office,
the Naval Education and Training Command, and the
Joint National Training Capability Program Office.
Terrain generation has been supported by the National
Geospatial-Intelligence Agency. The authors also
acknowledge their development partners at the Naval
Air Command Orlando and BMH Associates.

Reference
1. A. Balogh, Real-Time Visualization of Detailed Terrain, mas-

ter’s thesis, Budapest University of Technology and Eco-
nomics, 2003; http://web.interware.hu/bandi/ranger.
html.

Readers may contact Rudy Darken at darken@nps.edu.

Readers may contact the department editors at lrosen-
bl@nsf.gov or michael_macedonia@peostri.army.mil.

Projects in VR

12 May/June 2005

3 FOPCSIM is intended to have a game feel even though it is a training
system. It needs to be easy to install and use by any soldier or marine.

